Superextensions of three-element semigroups

Abstract

A family $\mathcal{A}$ of non-empty subsets of a set $X$ is called an {\em upfamily} if for each set $A\in\mathcal{A}$ any set $B\supset A$ belongs to $\mathcal{A}$. An upfamily $\mathcal L$ of subsets of $X$ is said to be {\em linked} if $A\cap B\ne\emptyset$ for all $A,B\in\mathcal L$. A linked upfamily $\mathcal M$ of subsets of $X$ is {\em maximal linked} if $\mathcal M$ coincides with each linked upfamily $\mathcal L$ on $X$ that contains $\mathcal M$. The {\em superextension} $\lambda(X)$ consists of all maximal linked upfamilies on $X$. Any associative binary operation $* : X\times X \to X$ can be extended to an associative binary operation $\circ: \lambda(X)\times\lambda(X)\to\lambda(X)$ by the formula $\mathcal L\circ\mathcal M=\Big\langle\bigcup_{a\in L}a*M_a:L\in\mathcal L,\;\{M_a\}_{a\in L}\subset\mathcal M\Big\rangle$ for maximal linked upfamilies $\mathcal{L}, \mathcal{M}\in\lambda(X)$. In the paper we describe superextensions of all three-element semigroups up to isomorphism.

Authors and Affiliations

V. Gavrylkiv

Keywords

Related Articles

Some analytic properties of the Weyl function of a closed linear relation

Let L and L0, where L is an expansion of L0, be closed linear relations (multivalued operators) in a Hilbert space H. In terms of abstract boundary operators (i.e. in the form which in the case of differential operators...

On the growth of a klasss of Dirichlet series absolutely convergent in half-plane

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty...

Analogues of Whittker's theorem for Laplace-Stieltjes integrals

For the maximum of the integrand of Laplace-Stieltjes integral the lower estimates on sequence are found. Using the estimates we obtained analogues of Whittaker's theorem for entire functions given by lacunary power seri...

Separating polynomials and uniform analytical and separating functions

We present basic results of the theory of separating polynomials and uniformly analytic and separating functions on separable real Banach spaces. We consider basic properties of separating polynomials and uniformly analy...

On an approach to the construction of the Friedrichs and Neumann-Krein extensions of nonnegative linear relations

Let L0 be a closed linear nonnegative (probably, positively defined) relation ("multivalued operator") in a complex Hilbert space H. In terms of the so called boundary value spaces (boundary triples) and corresponding We...

Download PDF file
  • EP ID EP324812
  • DOI 10.15330/cmp.9.1.28-36
  • Views 51
  • Downloads 0

How To Cite

V. Gavrylkiv (2017). Superextensions of three-element semigroups. Карпатські математичні публікації, 9(1), 28-36. https://europub.co.uk./articles/-A-324812