A Perspective on Using Machine Learning in 3D Bioprinting
Journal Title: International Journal of Bioprinting - Year 2020, Vol 6, Issue 1
Abstract
Recently, three-dimensional (3D) printing technologies have been widely applied in industry and our daily lives. The term 3D bioprinting has been coined to describe 3D printing at the biomedical level. Machine learning is currently becoming increasingly active and has been used to improve 3D printing processes, such as process optimization, dimensional accuracy analysis, manufacturing defect detection, and material property prediction. However, few studies have been found to use machine learning in 3D bioprinting processes. In this paper, related machine learning methods used in 3D printing are briefly reviewed and a perspective on how machine learning can also benefit 3D bioprinting is discussed. We believe that machine learning can significantly affect the future development of 3D bioprinting and hope this paper can inspire some ideas on how machine learning can be used to improve 3D bioprinting.
Authors and Affiliations
Chunling Yu, Jingchao Jiang
A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing
Today, additive manufacturing (AM) is implemented in medical industry and profoundly revolutionizes this area. This approach consists of producing parts by additions of layers of successive materials and offers advantage...
Roles of support materials in 3D bioprinting – Present and future
Bioprinting has been introduced as a new technique in tissue engineering for more than a decade. However, characteristics of bioprinted part are still distinct from native human tissue and organ in terms of both shape fi...
Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering
Bioprinting is a promising automated platform that enables the simultaneous deposition of multiple types of cells and biomaterials to fabricate complex three-dimensional (3D) tissue constructs. Collagen-based biomaterial...
Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblasts infiltration
Electrospun polymeric nanofibrous scaffold possesses significant potential in the field of tissue engineering due to its extracellular matrix mimicking topographical features that modulate a variety of key cellular activ...
Digital biomanufacturing supporting vascularization in 3D bioprinting
Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interp...