Application of inverse analysis in electromagnetic grinding of brown coal to obtain an optimal particle size distribution- a heuristic approach
Journal Title: Computer Assisted Methods in Engineering and Science - Year 2014, Vol 21, Issue 3
Abstract
This paper presents the research results of milling process optimization in the electromagnetic mill to obtain the predetermined particle size distribution of brown coal. Because of an important role of brown coal in Polish energy industry (power plants produce 9433 MW of electrical power from brown coal, which corresponds to about 34% share in total fuel usage structure of energy industry in Poland-2nd quarter 2013 [1]), there is a great need to look for and develop highly efficient methods of its mining, valorisation and low-emission combustion alongside with CO2 capture technology. This paper proposes, as one of the methods of adapting low-rank coal to being utilized in modernized and newly built plants, the process of simultaneous grinding and drying in an electromagnetic mill system. This method is energy efficient and what is more significant it reduces the space required for its adaptation, thanks to electromagnetic mill's compact installation design. It is essential to obtain the desired characteristics of the product through the adequate control of the processes. Major concern of this case study was focused on determination of optimal grinding parameters in the electromagnetic mill in order to obtain two products of a desired size distribution (1-6.3 mm for application in fluidized bed boilers and 0-315 µm for boiler burners). The authors presented some theoretical considerations of the mechanisms and physical phenomena occurring during a fragmentation of solid particles as well as the literature review of the subject. The process complexity level, taking place in the active area of electromagnetic mill, involves the influence of particle-milling rod and particle-particle interactions as well as the volume of milling rods or coal particle residence time on the size distribution of the product. All of the mentioned factors account for nonlinearity of the problem and make the conditions difficult to rescale. Hence, a heuristic approach to inverse problem was chosen to analyse the differences between the desired and obtained particle size distributions. The examinations concerned grinding parameters such as total amount of rods (volume-based) and rod sizes (single and multi-size combinations of milling elements) were conducted. Equivalent samples of Polish brown coal with a particle diameter size ranging from 0 to 10 mm were chosen as an investigated material. Influence of the total volume of rods was examined using three amounts: 100 ml, 150 ml and 200 ml. Two grinding aid sizes were chosen in the form of ferromagnetic rods: fine rods of the size of 10 x 1 mm and coarse rods of the size of 20 x 2 mm.
Authors and Affiliations
Michał Gandor, Krzysztof Sławiński, Barbara Balt, Wojciech Nowak
Method of fundamental solutions and random numbers for the torsion of bars with multiply connected cross sections
The torsion of bars with multiply connected cross section by means of the method of fundamental solutions (MFS) is considered. Random numbers were used to determine the minimal errors for MFS. Five cases of cross section...
A method of identification of kinematic chains and distinct mechanisms. (Received in the final form November 19, 2009)
A new method is proposed to identify the distinct mechanisms derived from a given kinematic chain in this paper. The kinematic chains and their derived mechanisms are presented in the form of a flow matrix. Two structura...
Application of artificial neural network in soil parameter identification for deep excavation numerical model
In this paper, an artificial neural network (ANN) is used to approximate response of deep excavation numerical model on input parameters. The approximated model is then used in minimization procedure of the inverse probl...
Identification of aerodynamic coefficients of a projectile and reconstruction of its trajectory from partial flight data
Several optimization techniques are proposed both to identify the aerodynamic coefficients and to reconstruct the trajectory of a fin-stabilized projectile from partial flight data. A reduced ballistic model is used inst...
Artificial neural networks in civil engineering: another five years of research in Poland
This state-of-the-art-paper is a resume of research activity of a non-formal Research Group on Artificial Neural Networks (RGANN) applications in Civil Engineering (CE). RGANN has been working at the Cracow University of...