Classification of Affective States via EEG and Deep Learning
Journal Title: International Journal of Advanced Computer Science & Applications - Year 2018, Vol 9, Issue 5
Abstract
Human emotions play a key role in numerous decision-making processes. The ability to correctly identify likes and dislikes as well as excitement and boredom would facilitate novel applications in neuromarketing, affective entertainment, virtual rehabilitation and forensic neuroscience that leverage on sub-conscious human affective states. In this neuroinformatics investigation, we seek to recognize human preferences and excitement passively through the use of electroencephalography (EEG) when a subject is presented with some 3D visual stimuli. Our approach employs the use of machine learning in the form of deep neural networks to classify brain signals acquired using a brain-computer interface (BCI). In the first part of our study, we attempt to improve upon our previous work, which has shown that EEG preference classification is possible although accuracy rates remain relatively low at 61%-67% using conventional deep learning neural architectures, where the challenge mainly lies in the accurate classification of unseen data from a cohort-wide sample that introduces inter-subject variability on top of the existing intra-subject variability. Such an approach is significantly more challenging and is known as subject-independent EEG classification as opposed to the more commonly adopted but more time-consuming and less general approach of subject-dependent EEG classification. In this new study, we employ deep networks that allow dropouts to occur in the architecture of the neural network. The results obtained through this simple feature modification achieved a classification accuracy of up to 79%. Therefore, this study has shown that the use of a deep learning classifier was able to achieve an increase in emotion classification accuracy of between 13% and 18% through the simple adoption of the use of dropouts compared to a conventional deep learner for EEG preference classification. In the second part of our study, users are exposed to a roller-coaster experience as the emotional stimuli which are expected to evoke the emotion of excitement, while simultaneously wearing virtual reality goggles, which delivers the virtual reality experience of excitement, and an EEG headset, acquires the raw brain signals detected when exposed to this excitement stimuli. Here, a deep learning approach is used to improve the excitement detection rate to well above the 90% accuracy level. In a prior similar study, the use of conventional machine learning approaches involving k-Nearest Neighbour (kNN) classifiers and Support Vector Machines (SVM) only achieved prediction accuracy rates of between 65% and 89%. Using a deep learning approach here, rates of 78%-96% were achieved. This demonstrates the superiority of adopting a deep learning approach over other machine learning approaches for detecting human excitement when immersed in an immersive virtual reality environment.
Authors and Affiliations
Jason Teo, Lin Hou Chew, Jia Tian Chia, James Mountstephens
OFDM System Analysis for reduction of Inter symbol Interference Using the AWGN Channel Platform
Orthogonal Frequency Division Multiplexing (OFDM) transmissions are emerging as important modulation technique because of its capacity of ensuring high level of robustness against any interferences. This proj...
The Reality of Applying Security in Web Applications in Academia
Web applications are used in academic institutions, such as universities, for variety of purposes. Since these web pages contain critical information, securing educational systems is as important as securing any banking...
Automatic Image Registration Technique of Remote Sensing Images
Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as i...
Extracting Code Resource from OWL by Matching Method Signatures using UML Design Document
Software companies develop projects in various domains, but hardly archive the programs for future use. The method signatures are stored in the OWL and the source code components are stored in HDFS. The OWL minimizes the...
A CONCEPT-TO-PRODUCT KNOWLEDGE MANAGEMENT FRAMEWORK: TOWARDS A CLOUD-BASED ENTERPRISE 2.0 ENVIRONMENT AT A MULTINATIONAL CORPORATION IN PENANG
Knowledge management initiatives of a multinational corporation in Penang are currently deployed via its enterprise-wide portal and Intranet. To improve knowledge management initiatives from its current strength, efforts...