CLUSTER ANALYSIS APPROACHES TO ASSESSING THE FINANCIAL AND ECONOMIC ACTIVITIES OF ENTERPRISES

Abstract

The article is devoted to the financial and economic assessment of the state of road transport enterprises in Ukraine through the use of multidimensional statistical cluster analysis. The article solved the task of analyzing the financial and economic state of enterprises in Ukraine for 2013-2017 years in the STATISTICA software product, taking into account financial and economic indicators. The study used four groups of indicators: liquidity, financial stability, business activity, profitability according to the financial statements of ten road transport enterprises. The use of the k-means method and the agglomerative tree-clustering method made it possible to divide enterprises into three clusters that reflect their state: crisis, pre-crisis, and non-crisis. When the k-means method is used, the initial centers of the clusters are specified by the method of sorting the distance and selecting observations at constant intervals, observations that maximize the initial distances between the clusters are chosen. The value of intergroup and average group variances, the F parameter and the level of significance were obtained, which made it possible to identify financial and economic indicators that are most informative for the clustering process using the k-means method. For clustering using the agglomerative tree-clustering method, the single link method was taken as the clustering rule. As a result of clustering, a dendrogram was constructed, which allows determining the clusters depending on the distance between them. This made it possible to analyse the characteristics of various aspects of the financial condition of the enterprise, to identify the parameters that form the initial clusters of the state of enterprises, and the clusters, which form separate clusters and gradually join the first clusters. A horizontal tree diagram of road transport enterprises has been built, which reflects enterprises that are closely shrinking with each other and form new clusters by combining. The clusters obtained using the method of k-means and agglomerative method of tree clustering were analyzed and conclusions regarding their state were drawn.

Authors and Affiliations

В. Р. Писарькова, Н. Ю. Науменко

Keywords

Related Articles

Выпуклая релаксация в многоэкстремальных задачах

В данной работе рассматриваются многоэкстремальные задачи в конечномерном евклидовом пространстве. Они возникают при математическом моделировании сложных систем в экономике, финансах, управлении, технологических процесса...

Чисельне моделювання стану пружно-пластичних циліндричних тіл під дією високотемпературних навантажень

Робота присвячена чисельному моделюванню стану пружно-пластичних циліндричних тіл під дією високотемпературних навантажень. Розроблено ітераційний метод покомпонентного розщеплення для розв’язання систем диференціальних...

Метод пакетного навчання нейромереж нелінійної авторегресії для прогнозу прибутку інтернет-магазину

У статті розглядаються і аналізуються існуючі методи прогнозування прибутку інтернет-магазину. В сучасній електронній комерції є проблема недостатньої ефективності автоматизації бізнес-процесів інтернет-магазину. Ґрунтую...

Calculation algorithm for adsorptive heat-moisture regenerator

The work is devoted to the development of an efficient algorithm for calculating the performance characteristics of adsorption regenerator of heat and moisture for the air conditioning and ventilation system. The followi...

Location-allocation problems

The paper considers various location-allocation problems arising in the process of strategic planning of regional development. Thus, the problems are attractive for both commercial and state-owned companies. Process of s...

Download PDF file
  • EP ID EP642559
  • DOI 10.32434/2521-6406-2019-5-1-63-69
  • Views 133
  • Downloads 0

How To Cite

В. Р. Писарькова, Н. Ю. Науменко (2019). CLUSTER ANALYSIS APPROACHES TO ASSESSING THE FINANCIAL AND ECONOMIC ACTIVITIES OF ENTERPRISES. Комп’ютерне моделювання: аналіз, управління, оптимізація, 1(1), 63-69. https://europub.co.uk./articles/-A-642559