Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: Inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process
Journal Title: The AAPS Journal - Year 2001, Vol 3, Issue 3
Abstract
This study evaluated tableting compression by using internal and external lubricant addition. The effect of lubricant addition on the enzymatic activity of trypsin, which was used as a model drug during the tableting compression process, was also investigated. The powder mixture (2% crystalline trypsin, 58% crystalline lactose, and 40% microcrystalline cellulose) was kneaded with 5% hydroxypropyl cellulose aqueous solution and then granulated using an extruding granulator equipped with a 0.5-mm mesh screen at 20 rpm. After drying, the sample granules were passed through a 10-mesh screen (1680 μm). A 200-mg sample was compressed by using 8-mm punches and dies at 49, 98, 196, or 388 MPa (Mega Pascal) at a speed of 25 mm/min. The external lubricant compression was performed using granules without lubricant in the punches and dies. The granules were already dry coated by the lubricant. In contrast, the internal lubricant compression was performed using sample granules (without dry coating) containing 0.5% lubricant. At 98 MPa, for example, the compression level using the external lubricant addition method was about 13% higher than that for internal addition. The significantly higher compressing energy was also observed at other MPas. By comparison, the friction energy for the external addition method calculated based on upper and lower compression forces was only slightly larger. The hardness of tablets prepared using the internal addition method was 34% to 48% lower than that for the external addition method. The total pore volume of the tablet prepared using the external addition method was significantly higher. The maximum ejection pressure using the no-addition method (ie, the tablet was prepared using neither dry-coated granules nor added lubricant) was significantly higher than that of other addition methods. The order was as follows: no addition, external addition, and then internal addition. The ejection energy (EE) for internal addition was the lowest; for no addition, EE was the highest. In the dissolution test, the tablets obtained using external addition immediately disintegrated and showed faster drug release than those prepared using internal addition. This result occurred because the water penetration rate of the tablet using the external addition was much higher. The trypsin activity in tablets prepared using the external addition method was significantly higher than that produced using the internal addition method at the same pressure. All these results suggest that the external addition method might produce a fast-dissolution tablet. Because the drug will be compressed using low pressure only, an unstable bulk drug may be tableted without losing potency.
Authors and Affiliations
Makoto Otsuka, Mitsuyo Sato, Yoshihisa Matsuda
Developmental toxicity of prenatal exposure to toluene
Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are incresingly exposed to solvents such as toluene in occupational settings (ie, long-term, lowco...
Summary Report of PQRI Workshop on Nanomaterial in Drug Products: Current Experience and Management of Potential Risks
At the Product Quality Research Institute (PQRI) Workshop held last January 14–15, 2014, participants from academia, industry, and governmental agencies involved in the development and regulation of nanomedicines...
In Vivo Quantification of Active Decitabine-Triphosphate Metabolite: A Novel Pharmacoanalytical Endpoint for Optimization of Hypomethylating Therapy in Acute Myeloid Leukemia
Decitabine (DAC) is used for treatment of patients with myelodysplastic syndromes and acute myeloid leukemia (AML). Following cellular uptake, DAC is activated to DAC-triphosphate (TP) and incorporated into DNA. Once inc...
Pre-existing Antibody: Biotherapeutic Modality-Based Review
Pre-existing antibodies to biotherapeutic drugs have been detected in drug-naïve subjects for a variety of biotherapeutic modalities. Pre-existing antibodies are immunoglobulins that are either specific or cross-...
Safety biomarkers and the clinical development of oncology therapeutics: Considerations for cardiovascular safety and risk management
During the clinical development of oncology therapeutics, new safety biomarkers are being employed with broad applications and implications for risk management and regulatory approval. Clinical laboratory results, used a...