Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: Inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process
Journal Title: The AAPS Journal - Year 2001, Vol 3, Issue 3
Abstract
This study evaluated tableting compression by using internal and external lubricant addition. The effect of lubricant addition on the enzymatic activity of trypsin, which was used as a model drug during the tableting compression process, was also investigated. The powder mixture (2% crystalline trypsin, 58% crystalline lactose, and 40% microcrystalline cellulose) was kneaded with 5% hydroxypropyl cellulose aqueous solution and then granulated using an extruding granulator equipped with a 0.5-mm mesh screen at 20 rpm. After drying, the sample granules were passed through a 10-mesh screen (1680 μm). A 200-mg sample was compressed by using 8-mm punches and dies at 49, 98, 196, or 388 MPa (Mega Pascal) at a speed of 25 mm/min. The external lubricant compression was performed using granules without lubricant in the punches and dies. The granules were already dry coated by the lubricant. In contrast, the internal lubricant compression was performed using sample granules (without dry coating) containing 0.5% lubricant. At 98 MPa, for example, the compression level using the external lubricant addition method was about 13% higher than that for internal addition. The significantly higher compressing energy was also observed at other MPas. By comparison, the friction energy for the external addition method calculated based on upper and lower compression forces was only slightly larger. The hardness of tablets prepared using the internal addition method was 34% to 48% lower than that for the external addition method. The total pore volume of the tablet prepared using the external addition method was significantly higher. The maximum ejection pressure using the no-addition method (ie, the tablet was prepared using neither dry-coated granules nor added lubricant) was significantly higher than that of other addition methods. The order was as follows: no addition, external addition, and then internal addition. The ejection energy (EE) for internal addition was the lowest; for no addition, EE was the highest. In the dissolution test, the tablets obtained using external addition immediately disintegrated and showed faster drug release than those prepared using internal addition. This result occurred because the water penetration rate of the tablet using the external addition was much higher. The trypsin activity in tablets prepared using the external addition method was significantly higher than that produced using the internal addition method at the same pressure. All these results suggest that the external addition method might produce a fast-dissolution tablet. Because the drug will be compressed using low pressure only, an unstable bulk drug may be tableted without losing potency.
Authors and Affiliations
Makoto Otsuka, Mitsuyo Sato, Yoshihisa Matsuda
Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively?
Cancer is a hyperproliferative disorder that is usually treated by chemotherapeutic agents that are toxic not only to tumor cells but also to normal cells, so these agents produce major side effects. In addition, these a...
Role of the breast cancer resistance protein (ABCG2) in drug transport
The 72-kDa breast cancer resistance protein (BCRP) is the second member of the subfamily G of the human ATP binding cassette (ABC) transporter superfamily and thus also designated as ABCG2. Unlike P-glycoprotein and MRP1...
In Vitro Cutaneous Application of ISCOMs on Human Skin Enhances Delivery of Hydrophobic Model Compounds Through the Stratum Corneum
This study aimed to investigate the effect of a novel kind of immune-stimulating complexes (ISCOMs) on human skin penetration of model compounds in vitro to evaluate their potential as a delivery system, ultimately for t...
Particle size analysis of concentrated phospholipid microemulsions: II. Photon correlation spectroscopy
The solvated droplet size of concentrated water-in-oil (w/o) microemulsions prepared frome egg and soy lecithin/water/isopropyl myristate and containing short-chain alcohol cosurfactants has been determined using photon...
A short-term (accelerated release) approach to evaluate peptide release from PLGA depot formulations
An accelerated method to evaluate peptide release from poly(dl-lactide-co-glycolide) (PLGA) depot formulations in short time is described. Peptide-loaded microspheres were made from hydrophilic 50∶50 PLGA by a di...