CONDITIONAL CAUCHY EQUATIONS OF T[sub]1,2[/sub] - TYPE ON [i]n[/i] - GROUPS
Journal Title: Journal of Science And Arts - Year 2012, Vol 20, Issue 3
Abstract
J. Dhombres [2] made a classification of conditional Cauchy equations on groups. In [9] we extended the results obtained by J. Dhombres and R. Ger [3], [4] on conditional Cauchy equations of [i]T[/i][sub]1,1[/sub]-type (right cilinder type), to the similar equations on n-groups. In this paper we extend the results for conditional Cauchy equations of [i]T[/i][sub]1,2[/sub]-type.
Authors and Affiliations
VASILE POP
A NON-DESTRUCTIVE METHOD FOR MEASUREMENT OF MOISTURE IN BUILDING MATERIALS
The measurement of moisture in porous building materials is an important issue in many situations. Especially in the case of the restoration of historical monuments, it is desirable to use non-destructive methods that ca...
SOME GEOMETRIC INEQUALITIES OF IONESCU-WEITZENBÖCK TYPE IN TRIANGLE
Some Ionescu-Weitzenböck’ s type inequalities for general triangles are presented. The main tool in the proofs is Radon’s inequality and of course Ionescu-Weitzenböck s inequality.
SOME GENERALIZATIONS OF IONESCU-WEITZENBÖCK ’S INEQUALITY
In this paper we give some generalizations of the inequality of Ionescu-Weitzenböck.
A PARALLEL ALGORITHM FOR SOLVING TRIDIAGONAL LINEAR SYSTEMS
The coarse-grainded architecture model has been proposed to be a model of iently close existing parallel machines. Under this model we design a communication-efficient parallel algorithm for the solution of tridiagonal l...
THE TOPOLOGIC STUDY OF THE GEOMETRIC TRAJECTORIES IN THE MATHEMATICAL BILLIARDS
The mathematical billiard problem is about the reflection of a light ray in different bounded domains. In this paper we will refer to the domain bounded by a circle.