Design, development and evaluation of an automatic metering system for bare root seedlings of onion
Journal Title: Journal of Agricultural Machinery - Year 2016, Vol 6, Issue 2
Abstract
IntroductionIn recent years due to lack of water resources in our country, planting of bare root seedlings of onion has been welcomed by farmers. Considering the desired high dense planting of Iranian farmers, lack of proper transplanting machine has appeared as the main problem. To overcome this problem, some researchers tested a few methods, but none of them reached to complete successfully. As the one of last efforts, Taki and Asadi (2012) developed a semi-automatic transplanting machine with 9 planting units. This machine requires to 9 men to separate and single out a bunch of seedlings. Usage of this machine is very time-consuming and labor intensive. In Iran, transplanting of bare root seedlings is practically performed by hand with a density of 700-800 thousand plants at hectare. The main purpose of this study was designed, manufacture, and evaluation of an automatic metering device that with the separation and singulars of bare root seedlings of onion could get a high density planting.Materials and MethodsFig. 1 shows the main employed idea of this research for separation and single out a bunch of seedlings.As shown in Fig. 1, the metering device consisted of two carrying and separating belts with different teeth forms. Placing seedling bunches between the two belts, the belts move at different speeds in opposite directions and separate seedlings from their bunch.For proper design of metering device system, measurement of some physical properties were necessary. The obtained information was used to select two belts form. A belt with flexible plastic teethes with a height of 6 mm and the distance of 4mm was selected as separator while for carrier, two types of belts were selected: the first was the same as a separator and the second was made of metal teethes. Based on the average thickness of seedling bunch and some pre-tests, the horizontal angle of separator belt determined as α=20 degrees. Theoretical calculations were done to computatingof the needed force of the system. In this section, seedlings were modeled as some solid cylinders with a length of 200 and a diameter of 10 mm. In the mentioned system, it was necessary that the speed of separator belt is more than the speed of carrier belt. Thus, ratio of two linear velocities ( ) of 1.67 and 2.32 were considered for evaluation of the system. For evaluation of manufactured metering device, the effects of three factors, i.e., carrier belt type, ratio of linear velocities of the belts, and number of seedlings in a bunch (n = 30 and n =60), on qualitative planting parameters were studied in a factorial experiment based on completely randomized design with three replications. The studied qualitative planting parameters were miss index, consumed seedlings, miss length, quality of feed index, multiple index, mean, and damaged seedlings.Results and DiscussionThe results of analysis of variance showed that, except of belt type, effects of the two studied factors and all interactions are statistically non-significant on consumed seedlings and miss length indexes. The results indicated significant differences between miss index (P<0.01), multiple index (P<0.05), and mean (P<0.05) as affected by belt type. None of the studied variable had a significant effect on damaged seedlings. Interactions of belt type and ratio of linear velocities significantly affected the quality of feed index (P < 0.01). An increase in ratio of linear velocities in plastic toothed belt lead to decrease of mean and miss indexes, whereas in case of metal toothed belt there is no significant effect on this two indexes. The results also showed that increase of linear velocities for the two types of carrier belt lead to increase of consumed seedlings and decrease of miss length. At the two ratios of linear velocities, miss length in metal toothed is less than plastic toothed belt. ConclusionsCommercial transplanting machines are not suitable for dense planting of onion. In this research an automatic metering device for separation and singularize of bare root seedlings of onion was manufactured and evaluated. The results indicated that the carrier belt with long and rigid teeth, having an angle of attack, could separate seedlings more efficiently. The results also showed a 80 percent increased in uniformity of plant seedlings distances is reachable using the metering system.
Authors and Affiliations
M. Tohri,D. Ghanbarian,O. Taki,M. Ghasemi-Varnamkhasti,
Study of Potential, Characteristics and Parameters of the Wind Energy Case study: Dehloran County
Introduction Geographical location and climatic conditions are the important factors affecting the wind energy potential of each region. Iran is a vast country with different climates and the exploitation of its wind ene...
Investigating the Effect of Output Flow Regulator Plate on the Performance of Flour Cyclone: Experimental Studies and Numerical Simulations
IntroductionCyclone separators use the centrifugal force generated by the gas flow stream to separate the particles from their carrier gas. Simple design, low capital, and easy maintenance make them ideal for use as a va...
Sound Signals Processing of Roosters for Sexual Maturity and Puberty Diagnosis
IntroductionImmature birds, like humans and many animals, pass through the puberty period to sexual maturity that is accompanied by sound changes and after the sexual maturity, the sound structure evolves. The puberty pe...
Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods
Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006). Using this tillage system including minimum and zero tillage has be...
Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran
Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. H...