Determination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources
Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 4
Abstract
Objective: Brachytherapy sources are widely used for the treatment of cancer. The report of Task Group No. 43 (TG-43) of American Association of Physicists in Medicine is known as the most common method for the determination of dosimetric parameters for brachytherapy sources. The aim of this study is to obtain TG-43 dosimetric parameters for 60Co, 137Cs, 192Ir and 103Pd brachytherapy sources by Monte Carlo simulation. Methods: In this study, 60Co (model Co0.A86), 137Cs (model 6520-67), 192Ir (model BEBIG) and 103Pd (model OptiSeed) brachytherapy sources were simulated using MCNPX Monte Carlo code. To simulate the sources, the exact geometric characterization of each source was defined in Monte Carlo input programs. Dosimetric parameters including air kerma strength, dose rate constant, radial dose function and anisotropy function were calculated for each source. Each input program was run with sufficient number of particle histories. The maximum type A statistical uncertainty in the simulation of the 60Co, 137Cs, 192Ir and 103Pd sources, were equal to 4%, 4%, 3.19% and 6.50%, respectively. Results: The results for dosimetry parameters of dose rate constant, radial dose function and anisotropy function for the 60Co, 137Cs, 192Ir and 103Pd sources in this study demonstrated good agreement with other studies. Conclusion: Based on the good agreement between the results of this study and other studies, the TG-43 results for Co0.A86 60Co, 67-65200 137Cs, BEBIG 192Ir and OptiSeed 103Pd sources are validated and can be used as input data in treatment planning systems (TPSs) and to validate the TPS calculations. Citation: Mozaffari A, Ghorbani M. Determination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources. J Biomed Phys Eng. 2019;9(4):425-436. https://doi.org/10.31661/jbpe.v0i0.570.
Authors and Affiliations
M. Ghorbani, A. Mozaffari
Online Estimation of Elbow Joint Angle Using Upper Arm Acceleration: A Movement Partitioning Approach
Estimating the elbow angle using shoulder data is very important and valuable in Functional Electrical Stimulation (FES) systems which can be useful in assisting C5/C6 SCI patients. Much research has been conducted based...
Uncertainty Analysis in MRI-based Polymer Gel Dosimetry
Background: Polymer gel dosimeters combined with magnetic resonance imaging (MRI) can be used for dose verification of advanced radiation therapy techniques. However, the uncertainty of dose map measured by gel dosimeter...
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy techniq...
In vitro Evaluation of the Relationship between Gray Scales in Digital Intraoral Radiographs and Hounsfield Units in CT Scans
Background: Jaw bone quality plays an essential role in treatment planning and prognosis of dental implants. Regarding several available methods for bone density measurements, they are not routinely used before implant s...
An Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region
Purpose: Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target v...