Determination of the Firing Pin Critical Velocity and the Critical Power in the Percussive Initiation of Primer Caps

Abstract

This work involved testing of the probability of initiating a KWM-3 type of primer cap as a function of the firing pin velocity upon impact. The tested firing pin was accelerated to the required velocity by a falling mass. The measurements under this work were made with a measurement system and methodologies developed at Air Force Institute of Technology (AFIT) in Warsaw (Poland). The percussive pulse velocity and power was altered by modifying the percussive mass to keep the initiating pulse energy constant at two levels: Ewe = 272 mJ and 343 mJ. The firing pin velocity values estimated by experimental data to bring a 50% probability of percussive primer cap initiation were within the interval vi50% = 0.34÷0.51 m/s. It was found that the mean primer cap ignition delay rose from approx. 0.7 ms at a percussion velocity of 1.5 m/s to 6 ms at 0.17 m/s. The experimental data suggest the values of Ewe x vi50% = 0.136. A simplified model was proposed for the deformation of the primer cap base and compressed pyrotechnical mixture shape. The model served to determine the approximate time trend for the penetration of the primer cap by the firing pin, including velocity, power and emitted energy, by assuming a complete energy transfer from the percussive mass to the primer cap. The mean initiating pulse power calculated from the model at the vi50% interval was Pavg = 120÷180 W, whereas the maximum initiating pulse power was Pmax = 170÷250 W. The calculated time values for firing pin penetration were very close to the aforementioned primer cap ignition delays at the respective velocity and percussive mass values. This indirectly indicates nearly complete energy transmission from the percussive masses to the primer caps. A location was identified within the compressed pyrotechnical mixture shape volume which could form the hot spot for initiation of the explosive reaction. Based on the calculation results using the simplified model, and assuming that the energy and diffusive heat flux output to and from the explosive reaction initiation hot spot were equivalent, the expression of Ewe x vi50% derived from the result was approx. 0.18. This means that the two critical parameters of primer cap initiation: (i) velocity, which can be identified with vi50% (and the respective power) and (ii) Ewe50%, i.e. the energy threshold below which the probability of primer cap initiation is less than 0.5, are interrelated. Aside from the initiation mechanism proposed and applied to calculate the firing pin critical velocity, this work discusses several other initiation mechanisms, all of which were ruled out during the testing process.

Authors and Affiliations

Andrzej FARYŃSKI, Jarosław DĘBIŃSKI, Łukasz SŁONKIEWICZ

Keywords

Related Articles

New Nano-Precipitates Hardened Steels of Wide Range of Strength and Toughness and High Resistance to Piercing With Projectiles

Results of tests of mechanical properties and resistance to perforation with small-calibre armour-piercing projectiles for new designed grades of nano-precipitates hardened steels have been presented. The results compris...

Karabinek standardowy systemu MSBS-5,56K – podstawowa broń „polskiego żołnierza przyszłości” (część II)

W artykule zaprezentowano budowę podstawowych zespołów i mechanizmów 5,56 mm karabinka standardowego MSBS-5,56K, który został opracowany przez Zakład Konstrukcji Specjalnych Wojskowej Akademii Technicznej i Fabrykę Bron...

Theoretical and Experimental Studies at the Weapon’s Jump of the Automatic Small Arms

This paper presents the results of theoretical and experimental studies at the weapon’s jump of the chosen models of automatic firearms. Results of the theoretical studies were gained by the simulations made with the phy...

Regarding the Influence of High Frequency Combustion Instabilities on Operation of Solid Rocket Motors

High frequency combustion instabilities imply a major risk for the solid rocket motor’s stable operation and they are directly linked to the response of the solid propellant to the pressure coupling. Our paper aims at de...

Verification of the Mathematical Model Determining a Projectile Six-Degree-of-Freedom Motion in the Air

The physical and mathematical models described in the “Modern Exterior Ballistics” [5] by Robert L. McCoy were verified. All the motion equations of projectile modelled as a stiff non-deformable body of six degrees of fr...

Download PDF file
  • EP ID EP186880
  • DOI 10.5604/01.3001.0009.5019
  • Views 78
  • Downloads 0

How To Cite

Andrzej FARYŃSKI, Jarosław DĘBIŃSKI, Łukasz SŁONKIEWICZ (2016). Determination of the Firing Pin Critical Velocity and the Critical Power in the Percussive Initiation of Primer Caps. Problemy Mechatroniki. Uzbrojenie, lotnictwo, inżynieria bezpieczeństwa, 7(4), 33-66. https://europub.co.uk./articles/-A-186880