Development and Verification of an Autonomous and Controllable Mobile Robot Platform

Journal Title: Mechatronics and Intelligent Transportation Systems - Year 2023, Vol 2, Issue 1

Abstract

In this paper, we design a mobile robot platform, which employs a fully autonomous mechanical structure and electrical control system. Two driving wheels realize flexible steering movement with four universal wheels. A variety of sensors are built on the mobile robot platform, including the Inertial Measurement Unit (IMU) used to establish the inertial navigation coordinate system and the Velodyne’s Puck lidar sensor (VLP-16) used to obtain the three-dimensional (3D) point cloud information of the environment. Then, we build a software control architecture based on the Robot Operating System (ROS), using multi-node communication to perform positioning, environment perception, dynamic obstacle avoidance, path planning and motion control. Furthermore, a method of actively exploring the environment and constructing a map is proposed, using multi-path evaluation for real-time path planning and obstacle avoidance. In the end, we conduct autonomous exploration experiments to verify the performance of the designed mobile robot platform in indoor multi-obstacle scenes.

Authors and Affiliations

Tianyu Jiang, Shaolin Zhang, Rui Wang, Shuo Wang

Keywords

Related Articles

Simulation Analysis of Track Irregularity in High-Speed Maglev Systems Based on Universal Mechanism Software

As high-speed magnetic levitation (Maglev) technology continues to advance, the safety, stability, and passenger comfort of high-speed Maglev trains during operation are subject to increasingly stringent requirements. In...

Influence of Electromagnet-Rail Coupling on Vertical Dynamics of EMS Maglev Trains

Active control is essential for EMS maglev trains to achieve stable suspension. Currently, the main line's suspension performs well, but in areas with low track stiffness, such as the garage, turnouts, and other lines, u...

Pavement Condition Assessment Using Pavement Condition Index and Multi-Criteria Decision-Making Model

Road maintenance is essential to the growth of the transportation infrastructure and, thereby, has a big impact on a nation's overall economic stability and prosperity. It is impossible to simultaneously monitor and main...

Cause Analysis of Whole Vehicle NVH Performance Degradation under Idle Conditions

The NVH (noise, vibration, harshness) performance of automobiles is a key issue in enhancing user comfort. However, car manufacturers and original equipment manufacturers often invest more research and development effort...

Preparation of the User Requirements Specification for ETCS Level 2 System in Serbia - Experiences and Challenges

This paper presents a strategy implemented for preparation of the national User Requirements Specifications (URS) for European Train Control System (ETCS) with Level 2 in the Republic of Serbia. The requirements were the...

Download PDF file
  • EP ID EP732229
  • DOI https://doi.org/10.56578/mits020102
  • Views 58
  • Downloads 0

How To Cite

Tianyu Jiang, Shaolin Zhang, Rui Wang, Shuo Wang (2023). Development and Verification of an Autonomous and Controllable Mobile Robot Platform. Mechatronics and Intelligent Transportation Systems, 2(1), -. https://europub.co.uk./articles/-A-732229