Digital biomanufacturing supporting vascularization in 3D bioprinting

Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 1

Abstract

Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interpenetrating networks using multi-modal deposition techniques. Bioinks are being designed to address numerous critical process parameters. Both the cellular constructs and architectural design for the necessary vascular component in digitally biomanufactured tissue constructs are being addressed. Advances are occurring from the topology of the circuits to the source of the of the biological microvessel components. Instruments monitoring and control of these activates are becoming interconnected. More and higher quality data are being collected and analysis is becoming richer. Information management and model generation is now describing a “process network.” This is promising; more efficient use of both locally and imported raw data supporting accelerated strategic as well as tactical decision making. This allows real time optimization of the immediate bioprinting bioprocess based on such high value criteria as instantaneous progress assessment and comparison to previous activities. Finally, operations up- and down-stream of the deposition are being included in a supervisory enterprise control.

Authors and Affiliations

William Whitford and James B. Hoying

Keywords

Related Articles

Multicomponent bioprinting of heterogeneous hydrogel constructs based on microfluidic printheads

Multimaterial bioprinting provides a promising strategy to recapitulate complex heterogeneous architectures of native tissues in artificial tissue analogs in a controlled manner. However, most of the existing multimateri...

Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as...

Roles of support materials in 3D bioprinting – Present and future

Bioprinting has been introduced as a new technique in tissue engineering for more than a decade. However, characteristics of bioprinted part are still distinct from native human tissue and organ in terms of both shape fi...

Creation of a vascular system for organ manufacturing

The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...

Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture

Laser Induced Forward Transfer (LIFT) bioprinting is one of a group of techniques that have been largely applied for printing mammalian cells so far. Bioprinting allows precise placement of viable cells in a defined matr...

Download PDF file
  • EP ID EP678658
  • DOI -
  • Views 153
  • Downloads 0

How To Cite

William Whitford and James B. Hoying (2017). Digital biomanufacturing supporting vascularization in 3D bioprinting. International Journal of Bioprinting, 3(1), -. https://europub.co.uk./articles/-A-678658