Dynamic Analysis of Continuous Pin Insertion Machines and Their Application in Precision Connector Manufacturing
Journal Title: Precision Mechanics & Digital Fabrication - Year 2024, Vol 1, Issue 3
Abstract
In the production of high-precision electronic connectors, the proper alignment and insertion quality of pins are critical to ensuring product reliability. Any pin misalignment or deformation can lead to electrical failures in connectors, such as poor contact or pin breakage. To address this issue, this paper conducts a systematic dynamic analysis of the pin insertion mechanism in continuous pin insertion machines, aiming to minimize defects during production and inspection processes. The study first outlines the working principles of continuous pin insertion machines and provides a comprehensive analysis of the pin insertion mechanism, control system, and visual inspection system. By establishing a dynamic model of the pin insertion mechanism, the research uses Matlab for simulation to explore the effects of clearance values, motor speeds, and different materials on the dynamic characteristics of the pin bar. Additionally, a comprehensive test platform was constructed, comprising a feeding module, pinhead, servo worktable, pressure sensor, infrared displacement sensor, and an industrial control computer. The experimental results confirm the accuracy of the simulations and reveal specific trends regarding how clearance values, motor driving speeds, and material selection impact the dynamics of the pin bar. The findings of this study not only enhance the operational stability of continuous pin insertion machines but also provide scientific guidance for quality control and defect prevention in precision connector manufacturing.
Authors and Affiliations
Yi Du
Dynamic Analysis of Continuous Pin Insertion Machines and Their Application in Precision Connector Manufacturing
In the production of high-precision electronic connectors, the proper alignment and insertion quality of pins are critical to ensuring product reliability. Any pin misalignment or deformation can lead to electrical failu...
Automated Alignment of U-Notch in Iron Caps Using Machine Vision: A System for Suspended Insulators
In the automated production line for suspended insulators, precise alignment of the U-shaped notch in iron caps is crucial for effective gluing. This study introduces a system based on machine vision that automates the a...
Enhanced Rule Generation in Product Design Through Rough Set Theory and Ant Colony Optimization
Limitations inherent in conventional rule generation methodologies, particularly concerning knowledge redundancy and efficiency in product design, are addressed through the adoption of a rough set-based approach in this...
Innovative 3D-Printed Suppressor Designs: Enhancing Safety and Efficiency in Firearm Use
Advancements in 3D printing technology have enabled the creation of highly efficient and cost-effective suppressors, offering significant safety benefits for firearm users. Exposure to firearm noise, even in controlled e...
Numerical Simulation and Analysis of Residual Stress in B91 Steel Deposition Using Wire Arc Additive Manufacturing
A numerical model of a Gas Metal Arc Welding (GMAW)-based Wire Arc Additive Manufacturing (WAAM) process was developed using the Abaqus software, with validation performed against experimental data from existing literatu...