Efficient Markov chain Monte Carlo sampling for electrical impedance tomography
Journal Title: Computer Assisted Methods in Engineering and Science - Year 2014, Vol 21, Issue 3
Abstract
This paper studies electrical impedance tomography (EIT) using Bayesian inference [1]. The resulting posterior distribution is sampled by Markov chain Monte Carlo (MCMC) [2]. This paper studies a toy model of EIT as the one presented in [3], and focuses on efficient MCMC sampling for this model. First, this paper analyses the computation of forward map of EIT which is the bottleneck of each MCMC update. The forward map is computed by the finite element method [4]. Here its exact computation was conducted up to five times more efficient, by updating the Cholesky factor of the stiffness matrix [5]. Since the forward map computation takes up nearly all the CPU time in each MCMC update, the overall efficiency of MCMC algorithms can be improved almost to the same amount. The forward map can also be computed approximately by local linearisation, and this approximate computation is much more efficient than the exact one. Without loss of efficiency, this approximate computation is more accurate here, after a log transformation is introduced into the local linearisation process. Later on, this improvement of accuracy will play an important role when the approximate computation of forward map will be employed for devising efficient MCMC algorithms. Second, the paper presents two novel MCMC algorithms for sampling the posterior distribution in the toy model of EIT. The two algorithms are made within the 'multiple prior update' [6] and 'the delayed-acceptance Metropolis-Hastings' [7] schemes respectively. Both of them have MCMC proposals that are made of localized updates, so that the forward map computation in each MCMC update can be made efficient by updating the Cholesky factor of the stiffness matrix. Both algorithms' performances are compared to that of the standard single-site Metropolis [8], which is considered hard to surpass [3]. The algorithm of 'multiple prior update' is found to be six times more efficient, while 'the delayed-acceptance Metropolis-Hastings' with single-site update is at least twice more efficient.
Authors and Affiliations
Erfang Ma
Milestones of Direct Variational Calculus and its Analysis from the 17th Century until today and beyond- Mathematics meets Mechanics- with restriction to linear elasticity
This treatise collects and reflects the major developments of direct (discrete) variational calculus since the end of the 17th century until about 1990, with restriction to classical linear elastome- chanics, such as 1D-...
Mathematical and numerical multi-scale modelling of multiphysics problems
In this paper we discuss two multi-scale procedures, both of mathematical nature as opposed to purely numerical ones. Examples are shown for the two cases. Attention is also devoted to thermodynamical aspects such as the...
Analysis of fluid-structure interaction of a torus subjected to wind loads
In the paper the aerodynamic forces acting on a part of a water slide or other object with curved, tubular shape, depending on the section of a torus and value of the wind velocity, were obtained. This was done by means...
CFD model of coupled thermal processes within coke oven battery as an example of complex industrial application
This paper describes results of the mathematical modelling of steady-state and transient physical phenomena taking place in the heating channels of a coke oven battery. A formulated system of standard Computational Fluid...
Coupling of CFD and lumped parameter codes for thermal-hydraulic simulations of reactor containment
The work deals with thermal-hydraulic analyses of a pressurized water reactor containment response to accidents caused by a rupture of primary circuit. The in-house system computer code HEPCAL-AD and CFD ANSYS Fluent hav...