Enhanced Load-Bearing Capacities in Box-Plate Steel Prefabricated Structures: Evaluating the Role of Composite Stiffened Plate Walls and Welding Techniques
Journal Title: GeoStruct Innovations - Year 2023, Vol 1, Issue 1
Abstract
This study examines innovative box-plate prefabricated steel structures, where stiffened steel plates serve as primary load-bearing walls and floors. In contrast to traditional stiffened steel plate walls, which typically exhibit significant hysteresis, pronounced out-of-plane deformation, and rapid stiffness degradation, these advanced systems demonstrate superior performance. A pivotal feature of these structures is the intensive use of welding to connect stiffened steel plates during assembly. This study introduces a novel composite stiffened steel plate wall, addressing concerns of traditional systems, and executes a comprehensive numerical simulation to assess the influence of welding on joint integrity and overall structural performance. It is observed that the height-to-thickness ratio of steel plate walls significantly influences load-bearing capacity, with a lower ratio yielding enhanced capacity. However, the stiffness ratio of ribs is found to have minimal impact. An increase in bolt quantity and density correlates with improved ultimate bearing capacity. Moreover, the adoption of staggered welding techniques bolsters shear strength, though the positioning of welds has negligible influence on this parameter. The number of welded joints moderately affects shear strength, while the size of staggered welding joints is identified as a crucial factor, with larger sizes leading to more pronounced reductions in shear strength. This study highlights the importance of construction details, particularly in welding practices, in the structural integrity and performance of box-plate prefabricated steel structures. The findings offer significant insights for optimizing design and construction methodologies to maximize the load-bearing capacities of these innovative systems.
Authors and Affiliations
Tao Lan, Lili Wu, Ruixiang Gao
Analysis of Clay Based Cementitious Nanofluid Subjected to Newtonian Heating and Slippage Conditions with Constant Proportional Caputo Derivative
Recent advancements have seen the integration of nanocomposites, composed of clay minerals and polymers, into cementitious materials to enhance their mechanical properties. This investigation focuses on the dynamics of c...
Brief Overview of the Thermal and Mechanical Properties of Wood, Steel, and Gypsum Board for Structural Connections
This study outlines the essential thermal and mechanical properties of wood, steel, and gypsum board, focusing on their application in timber-steel and timber-timber connections, as well as in protected and unprotected c...
General-Variable Order Fractional Creep Constitutive Model for Cemented Backfill Materials: Considerations of Particle Size, Dosage, and Confining Pressure
Building upon the foundations of classical fractional derivatives, the general fractional derivative emerges as a significant advancement in the development of constitutive models, especially for materials with complex p...
Analysis of Tunnel Reliability Based on Limit Strain Theory
Traditional analyses of tunnel reliability, which employ deformation values, such as surface settlement, crown settlement, and arch shoulder settlement, as instability indicators, fail to accurately depict the failure st...
Simulation of Support Effects in Geotechnical Engineering: A Comparative Study of Concrete and Steel Pipe Piles under Pile-Soil Interaction
In this study, the FLAC3D finite difference numerical software was employed to simulate a geotechnical engineering project, establishing scenarios with concrete and steel pipe piles for support simulation. The analysis f...