Estimation of Dosimetric Parameters based on KNR and KNCSF Correction Factors for Small Field Radiation Therapy at 6 and 18 MV Linac Energies using Monte Carlo Simulation Methods

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 1

Abstract

Background: Estimating dosimetric parameters for small fields under non-reference conditions leads to significant errors if done based on conventional protocols used for large fields in reference conditions. Hence, further correction factors have been introduced to take into account the influence of spectral quality changes when various detectors are used in non-reference conditions at different depths and field sizes. Objective: Determining correction factors (KNR and KNCSF) recommended recently for small field dosimetry formalism by American Association of Physicists in Medicine (AAPM) for different detectors at 6 and 18 MV photon beams. Methods: EGSnrc Monte Carlo code was used to calculate the doses measured with different detectors located in a slab phantom and the recommended KNR and KNCSF correction factors for various circular small field sizes ranging from 5-30 mm diameters. KNR and KNCSF correction factors were determined for different active detectors (a pinpoint chamber, EDP-20 and EDP-10 diodes) in a homogeneous phantom irradiated to 6 and 18 MV photon beams of a Varian linac (2100C/D). Results: KNR correction factor estimated for the highest small circular field size of 30 mm diameter for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.993, 1.020 and 1.054; and 0.992, 1.054 and 1.005 for the 6 and 18 MV beams, respectively. The KNCSF correction factor estimated for the lowest circular field size of 5 mm for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.994, 1.023, and 1.040; and 1.000, 1.014, and 1.022 for the 6 and 18 MV photon beams, respectively. Conclusion: Comparing the results obtained for the detectors used in this study reveals that the unshielded diodes (EDP-20 and EDP-10) can confidently be recommended for small field dosimetry as their correction factors (KNR and KNCSF) was close to 1.0 for all small field sizes investigated and are mainly independent from the electron beam spot size.

Authors and Affiliations

S. A. Rahimi, B. Hashemi, S. R. Mahdavi

Keywords

Related Articles

Reducing Radiation Doses in Female Breast and Lung during CT Examinations of Thorax: A new Technique in two Scanners

Background: Chest CT is a commonly used examination for the diagnosis of lung diseases, but a breast within the scanned field is nearly never the organ of interest. Objective: The purpose of this study is to compare the...

Designing and Developing Automatic Trolley for Washing and Dressing the Wounds

Introduction: Many items are needed for dressing including sterile dressing set, antiseptic and washing solutions, leucoplast tape, waste bin for infectious garbage, waste bin for noninfectious garbage, safe disposal tra...

Dosimetric Evaluation of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) Using AAPM TG 119 Protocol

Background: The commissioning accuracy of Volumetric Modulated Arc Therapy (VMAT) need to be evaluated. Objective: To test and evaluate commissioning accuracy of VMAT based on the TG 119 protocols at local institution. M...

Biological Effect of Modern Fetal Ultrasound Techniques on Human Dermal Fibroblast Cells

Background: Diagnostic ultrasound has been used to detect human disease especially fetus abnormalities in recent decades. Although the harmful effects of diagnostic ultrasound on human have not been established so far, s...

Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?

Objective: In this research, a new approach termed “evolutionary-based brain map” is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) featur...

Download PDF file
  • EP ID EP613244
  • DOI -
  • Views 113
  • Downloads 0

How To Cite

S. A. Rahimi, B. Hashemi, S. R. Mahdavi (2019). Estimation of Dosimetric Parameters based on KNR and KNCSF Correction Factors for Small Field Radiation Therapy at 6 and 18 MV Linac Energies using Monte Carlo Simulation Methods. Journal of Biomedical Physics and Engineering, 9(1), 37-50. https://europub.co.uk./articles/-A-613244