Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors
Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 4
Abstract
Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method. Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy coefficient (its shape) with the aim of Diffusion Tensor imaging (as a non-invasive method) in the grading of gliomas. Methods: A group of 20 patients with histologically glial approved was evaluated. In this study, we used a 1.5-Tesla MR system (AVANTO; Siemens, Germany) with a standard head coil for scanning. Multi-directional diffusion weighted imaging (measured in 12 non-collinear directions) and T1 weighted non-enhanced were performed for all patients. We defined two Regions of Interest (ROIs); white matter adjacent to the tumor and the homologous fiber tracts to the first ROI in the contralateral hemisphere. Results: Linear anisotropy coefficient (CL), fractional anisotropy (FA) values and ratios of low-grade peri-tumoral fiber tracts were higher than high-grade gliomas (Pvalue CLt =0.014, P-value CLt/n=0.019 and P-value FAt =0.006, P-value FAt/n=0.024). In addition, we perform ROC curve for each parameter (CL ratio-AUC = 0.82 and FA ratio-AUC = 0.868). Conclusion: Our findings prove significant difference between diffusion anisotropy (FA) and diffusion shape (Cl) between low grade and high grade glioma, based on which we find this evaluation helpful in the grading of glial tumors. Citation: Davanian F, Faeghi F, Shahzadi S, Farshifar Z. Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors. J Biomed Phys Eng. 2019;9(4):459-464. https://doi.org/10.31661/jbpe.v0i0.513.
Authors and Affiliations
F. Faeghi, S. Shahzadi, Z. Farshidfar
New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing sci...
Expression Levels of Two DNA Repair-related Genes under 8 Gy Ionizing Radiation and 100 Mg/Kg Melatonin Delivery In Rat Peripheral Blood
Background: After radiation therapy (RT), some health hazards including DNA damages may occur where melatonin can play a protective role due to free radical generation. On the other hand, serious accidental overexposures...
Craniospinal Irradiation in Medulloblastoma using High Energy Medical Linear Accelerator: an Innovative Approach to Planning Technique
Background: Craniospinal irradiation (CSI) of medulloblastoma poses technological challenges due to the involvement of large treatment volume. Commonly, the whole treatment length is covered with two different isocentric...
Evaluation of Electron Specific Absorbed Fractions in Organs of Digimouse Voxel Phantom Using Monte Carlo Simulation Code FLUKA
Background: For preclinical evaluations of radiopharmaceuticals, most studies are carried out on mice. Electron specific absorbed fractions (SAF) values have had vital role in the assessment of absorbed dose. In past stu...
MRS Shimming: An Important Point Which Should not be Ignored
Background: Proton magnetic resonance spectroscopy (MRS) is a well-known device for analyzing the biological fluids metabolically. Obtaining accurate and reliable information via MRS needs a homogeneous magnetic field in...