Evaluation of environmental and economic benefits of CO_2 utilization technologies and their future development trends

Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 3

Abstract

In 2022, global CO_2 emissions reached 36.07 Gt, but only 230 Mt of CO_2 were captured and utilized, accounting for just 0.64% of the total emissions. To achieve the ambitious goal of carbon neutrality by 2060, CO_2 emissions must be reduced to 5 Gt, with CO_2 utilization reaching a total of 1.2 Gt, representing a utilization rate of 24%. This highlights the urgent need to enhance CO_2 utilization. Carbon capture, utilization, and storage (CCUS) technology is considered one of the most promising solutions for mitigating CO_2 emissions in addressing the urgent global challenges posed by climate change. The transformation of captured CO_2 into value-added industrial products (CCU) through various chemical, biological, and electrochemical processes has been a core focus of both academic and industrial research. Despite the focus on CCU, the precise contribution of various conversion technologies to reducing CO_2 emissions remains unclear. To address this issue, this paper systematically reviews the developmental landscape of CO_2 conversion technologies over recent decades, with a particular focus onthree representative CO_2 conversion pathways and their resulting products. Through a comprehensive analysis, the paper conducts a comparative assessment of the environmental impacts and technical economics associated with distinct technology pathways and products. The discussion further explores the potential applications of these conversion technologies and their capacity to achieve negative carbon emissions. Crucially, the research highlights the substantial potential for achieving negative carbon emissions, thereby playing a pivotal role in the overall reduction of CO_2 emissions. In conclusion, this paper not only provides insights into the current state of CO_2 conversion technologies but also emphasizes the crucial role of carbonation and polymerization products in achieving significant reductions in carbon emissions.

Authors and Affiliations

YANG Gang|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, WANG Chenxi|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, LUO Chunlin|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, GUO Zeyu|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, LIU Min|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, ZHANG Honglei|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, XU Mengxia|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China, WU Tao*|University of Nottingham Ningbo China, China, New Materials Institute, University of Nottingham Ningbo China, China, Ningbo Nottingham New Materials Institute Co., Ltd., China

Keywords

Related Articles

Review on transformation behavior of heavy metals and phosphorus in sewage sludge pyrolysis biochar

Large amount sewage sludge (SS) is produced from the wastewater-treatment system, which contains many microorganisms, organic pollutants and a variety of heavy metals. In addition, it also enriches nitrogen, phosphorus,...

Risks and coping strategies for energy low-carbon transitions: Research based on the new concept of energy security

Energy low-carbon transitions have become a crucial approach for countries around the world to cope with climate crisis and promote sustainable development. However, most of the existing studies have analyzed the risks a...

Study on MnO_2-supported noble metal catalysts for CO catalytic oxidation at low temperature

A series of MnO_2-supported noble metal catalysts (Pd/MnO_2、Ru/MnO_2、Ag/MnO_2 and Pt/MnO_2) with a noble metal loading of 3.0% were synthesized by redox precipitation. The catalytic oxidation ability of CO followed the...

Study on adsorption of NO and NH_3 on VPO/TiO_2 catalysts by DFT simulation

Nitrogen oxides (NO_x), as one of the main atmospheric pollutants, seriously affect environmental safety and human health. Selective catalytic reduction (NH_3-SCR) is the most effective treatment method for NO_x removal...

Effects of gasoline additives on engine combustion and emissions characteristics

With stringent vehicle emissions regulations, high efficiency and cleanliness have become the development target of engine combustion and fuel technology. The gasoline additives could enhance fuel performance and thus co...

Download PDF file
  • EP ID EP737914
  • DOI 10.20078/j.eep.20240206
  • Views 38
  • Downloads 0

How To Cite

YANG Gang, WANG Chenxi, LUO Chunlin, GUO Zeyu, LIU Min, ZHANG Honglei, XU Mengxia, WU Tao* (2024). Evaluation of environmental and economic benefits of CO_2 utilization technologies and their future development trends. Energy Environmental Protection, 38(3), -. https://europub.co.uk./articles/-A-737914