Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry

Journal Title: Journal of Biomedical Physics and Engineering - Year 2017, Vol 7, Issue 1

Abstract

Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT and cyclotron center. Materials and Methods: 80 patients participated in this study. Thermoluminescence, electronic personal dosimeter and Geiger–Muller dosimeter were also utilized for measurement purpose. Results: The mean annual equivalent organ dose for scanning operator with regard to lens of eyes, thyroid, breast and finger according to mean±SD value, were 0.262±0.044, 0.256±0.046, 0.257±0.040 and 0.316±0.118, respectively. The maximum and minimum estimated annual whole body doses were observed for injector and the chemist group with values of (3.98±0.021) mSv/yr and (1.64±0.014) mSv/yr, respectively. The observed dose rates were 5.67 µSv/h in uptake room at the distance of 0.5 meter from the patient whereas the value 4.94 and 3.08 µSv/h were recorded close to patient’s head in PET/CT room and 3.5 meter from the reception desk. Conclusion: In this study, the injector staff and scanning operator received the first high level and second high level of radiation. This study confirmed that low levels of radiation dose were received by all radiation staff during PET/CT procedure using 18F-FDG due to efficient shielding and using trained radiation staff in PET/CT and cyclotron center of Masih Daneshvari hospital.

Authors and Affiliations

S Zargan, P Ghafarian, A Shabestani Monfared, A A Sharafi, M Bakhshayeshkaram, M R Ay

Keywords

Related Articles

Editorial

there is no Abstract.

Solver Device for Powdery Drugs

Pharmacotherapy is a major treatment method in healthcare centers, and the injection of powdered drugs is among common pharmacotherapy techniques. Medication errors and nosocomial infections are among major health issues...

Dosimetric Evaluation of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) Using AAPM TG 119 Protocol

Background: The commissioning accuracy of Volumetric Modulated Arc Therapy (VMAT) need to be evaluated. Objective: To test and evaluate commissioning accuracy of VMAT based on the TG 119 protocols at local institution. M...

A Comparison of Six Ultrasound Stimulation Types on Pseudomonas Aeruginosa Growth in Vitro

Background: This work evaluated the efficiency of common ultrasound stimulation (U.S.S) types on bacterial growth in vitro using clinically relevant conditions. Objective: To estimate different frequencies ultrasound bac...

New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor

Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing sci...

Download PDF file
  • EP ID EP330158
  • DOI -
  • Views 116
  • Downloads 0

How To Cite

S Zargan, P Ghafarian, A Shabestani Monfared, A A Sharafi, M Bakhshayeshkaram, M R Ay (2017). Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry. Journal of Biomedical Physics and Engineering, 7(1), 1-12. https://europub.co.uk./articles/-A-330158