Free Vibration of Annular Plates by Discrete Singular Convolution and Differential Quadrature Methods
Journal Title: Journal of Applied and Computational Mechanics - Year 2016, Vol 2, Issue 3
Abstract
Plates and shells are the significant structural components for many engineering and industrial applications. In this study, free vibration analysis of annular plates is investigated. For this, two different numerical methods such as differential quadrature and discrete singular convolution methods have been performed for numerical simulations. Frequency values have been obtained via these two methods. The performances of these two methods have been investigated.
Authors and Affiliations
Kadir Mercan, Hakan Ersoy, Omer Civalek
Saint-Venant torsion of non-homogeneous anisotropic bars
The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order p...
Quasi-Static Transient Thermal Stresses in an Elliptical Plate due to Sectional Heat Supply on the Curved Surfaces over the Upper Face
This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous bound...
Jeffery Hamel Flow of a non-Newtonian Fluid
This paper presents the Jeffery Hamel flow of a non-Newtonian fluid namely Casson fluid. Suitable similarity transform is applied to reduce governing nonlinear partial differential equations to a much simpler ordinary di...
Thermoelastic Analysis of Functionally Graded Hollow Cylinder Subjected to Uniform Temperature Field
This paper deals with the determination of displacement function and thermal stresses of a finite length isotropic functionally graded hollow cylinder subjected to uniform temperature field. The solution of the governing...
Linear dynamic response of nanobeams accounting for higher gradient effects
Linear dynamic response of simply supported nanobeams subjected to a variable axial force is assessed by Galerkin numerical approach. Constitutive behavior is described by three functional forms of elastic energy densiti...