HOMOMORPHIC ENCRYPTION OF CLOUD DATA BY THE MATRIX POLYNOMIAL METHOD

Abstract

The subject matter of the study is the encryption of information in cloud data computation and storage. Cloud technologies enable reducing the cost of IT infrastructure significantly and responding to changes in computing needs flexibly. In this case, the possibilities to perform calculations on the encrypted data without decrypting should be provided. Fully homomorphic encryption has this feature. The goal of this article is to increase the efficiency of fully homomorphic encryption (FHE) on the basis of matrix polynomials using the method of batch encryption to one ciphertext of several plaintexts with the subsequent complex processing of encrypted data. Batch encryption comes down to the fact that while conducting the operation on two ciphertexts, operations are simultaneously conducted coordinatewise on all the data contained in these ciphertexts in the form of plaintexts (SIMD). The task is the construction of algorithms of fully homomorphic data encryption using matrix polynomials. The following encryption methods are used in the article: the use of the Chinese remainder theorem; recording several different eigenvalues with different eigenvectors to the same matrix; the interpolation of matrix polynomials. The following results were obtained: possible approaches to constructing a batch EHE on the basis of matrix polynomials were described and analyzed, a set of algorithms that implement the FHE crypto scheme with interpolation of matrix polynomials was presented. The above algorithms and crypto schemes enable transmitting information in messages and data in queries as a plain text because an unlimited number of complex algebraic operations can be performed on the encrypted data, which makes it difficult to decrypt and read data without the knowledge of the entire algorithm. The constructed crypto schemes were shown as more efficient than analogues developed by IBM researchers. The following conclusion can be made: a batch fully homomorphic encryption using matrix polynomials can eliminate the need for at least partial decryption of data to carry out unauthorized computation on encrypted cloud data arrays.

Authors and Affiliations

Oleksandr Belej

Keywords

Related Articles

ASSESSING THE ENERGY COST OF ULTIMATE CONSUMERS OF A LOGISTIC SYSTEM IN THE PROCESS OF MATERIAL FLOW USE

The article deals with the assessment of the energy costs of the end users of the logistics system in the process of using the material flow. The goal of the study is to determine the impact of consumers on the choice of...

DEVELOPING THE INFORMATION SEARCH SYSTEM FOR SELECTING THE MOULDS FORMING ELEMENTS

Today the information environment is highly developed, it enables collecting, processing, storing, distributing, searching and transferring of information. The need for automation of information activities and informatio...

VALUE-BASED APPROACH TO MANAGING CURRENT ASSETS OF CORPORATE CONSTRUCTION COMPANIES

In modern conditions of management, the value of an enterprise becomes the main indicator, which is learned not only by scientists, but also by owners of enterprise and potential investors. Current assets take a very imp...

METHODOLOGICAL SUPPORT FOR ASSESSING THE INNOVATIVE CREATIVITY OF INDUSTRIAL ENTERPRISES BY CREATIVE AND DYNAMIC DIRECTIONS

The subject matter of the study is the theoretical and methodological provisions, components, methods and tools for assessing and enhancing innovative creativity. The goal of the article is to improve the methodological...

PROCESSING EXPERT INFORMATION IN THE CONTEXT OF COLLECTIVE ASSESSMENT OF A TOURIST INFRASTRUCTURE

The subject matter of the article is the process of processing expert information in the context of the collective assessment of a tourism infrastructure. The tourism infrastructure is a complex of interconnected actions...

Download PDF file
  • EP ID EP472251
  • DOI 10.30837/2522-9818.2018.6.005
  • Views 85
  • Downloads 0

How To Cite

Oleksandr Belej (2018). HOMOMORPHIC ENCRYPTION OF CLOUD DATA BY THE MATRIX POLYNOMIAL METHOD. Сучасний стан наукових досліджень та технологій в промисловості, 6(4), 5-14. https://europub.co.uk./articles/-A-472251