Hybrid Artificial Neural Network-Geostatistics Model for Urban Water Consumption Prediction. A Case Study: Osku City مدل ترکيبي شبکه عصبي مصنوعي- زمين آمار براي پيش‌بيني مصرف آب شهري: مطالعه موردي: شهر اسکو

Journal Title: آب و فاضلاب - Year 2018, Vol 29, Issue 5

Abstract

Abstract The prediction of water consumption in urban basins is of immense importance for the management of water resources, especially in arid and semiarid countries. The lack of strong predictive tools, or perhaps the lack of experienced users to those tools, may contribute to problems in data interpretation and failure to reach consensus about the need for key water management actions. Therefore, it is extremely important to comprehend the spatiotemporal variations of the water demand for the management of water in such urban areas. In this paper, a hybrid, artificial neural network – geostatistics, model is presented for spatiotemporal prediction of water consumptions. The proposed model contains two individual stages. In the first stage, an artificial neural network is trained for each station for time series modeling of water demands, so that the model can predict the water demands in the next month. At the second stage, the predicted values of water demands at different stations are imposed to a calibrated geostatistics model in order to estimate water demands at any desired point in the city. This methodology is applied for the Osku city, in East Azerbaijan Province, Iran. The most appropriate set of input variables to the model are selected through a combination of domain knowledge and available data series. The results suggested that the hybrid model is a good choice for predicting water demands in the study area.

Authors and Affiliations

Rezagoli Ejlali

Keywords

Related Articles

پيامد هوموسي شدن کاه گندم و توانايي ريزجانداران آن بر جذب زيستي سرب از يک آب آلوده

Adsorption of Pb(II) from Aqueous Solutions on Wheat Straw: Effects of Humification and Sterilization Abstract Biosorption is one of the methods used for the separation of heavy metals from aquatic environments. The ob...

پتانسیل حذف استایرن توسط میکروارگانیسم هوازی رودوکوکوس اریتروپولیس PTCC 1767

Potential Removal of Styrene by the Aerobic Microorganism Rhodococcus erythropolis PTCC 1767 Abstract Biodegradation of styrene by an aerobic microorganism (namely, Rhodococcus erythropolis PTCC 1767) as well as the e...

تصفيه الکتروشيميايي پساب حاوي مخلوط مواد رنگزاي راکتيو با به‌کارگيري الکترود کاتد بر پايه نانولوله‌هاي کربني

Electrochemical Treatment of Wastewater Containing Mixed Reactive Dyes Using Carbon Nanotube Modified Cathode Electrodes Nowadays, advanced electrochemical oxidation processes are promising methods for the treatment of w...

بررسي خاک اره اصلاح شده با دي‌اتيلن‌تري‌آمين به‌عنوان يک جاذب مؤثر براي حذف آهن (III) از نمونه‌هاي آبي

Evaluation of the Sawdust Modified with Diethylenetriamine as an Effective Adsorbent for Fe (III) Removal from Water Heavy metals are environmental pollutants that nowadays a lot of efforts are made to remove them. In t...

Download PDF file
  • EP ID EP463346
  • DOI 10.22093/wwj.2017.6731.1481
  • Views 80
  • Downloads 0

How To Cite

Rezagoli Ejlali (2018). Hybrid Artificial Neural Network-Geostatistics Model for Urban Water Consumption Prediction. A Case Study: Osku City مدل ترکيبي شبکه عصبي مصنوعي- زمين آمار براي پيش‌بيني مصرف آب شهري: مطالعه موردي: شهر اسکو. آب و فاضلاب, 29(5), 99-111. https://europub.co.uk./articles/-A-463346