Improving the diagnostics of underground pipelines at oil­and­gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks

Abstract

<p>A set of key parameters and information flows has been formed to simulate stages of probing the outside surface of underground metal pipelines (UMP) taking into account pH of the soil contacting with the pipe metal.</p><p>Specimens of 17G1S steel placed in acid, alkaline and neutral media were examined using a polarization potential meter in a complex with a contactless current meter. Principles of application of neural networks (NN) in processing experimental results were formulated. A database has been developed. It meets the initial conditions for controlling the soil pH at the boundary with the metal under real conditions.</p><p>Elements of the optimization approach for assessing pH of a coated UMP in the soil medium were proposed. The approach is based on the multiplicative qualimetric criterion of quality for the UMP section taking into account two groups of coefficients. The first group of coefficients refers to the internal coefficients and characterizes the metal pipeline and the second group refers to the external medium (i.e., soil electrolyte). Elements of the optimization approach for assessing pH of the coated pipeline in the soil medium were proposed.</p><p>An NN was presented for the "pipeline-coating" system, which:</p><p>1) is capable of solving the problem of cluster analysis and image classification;</p><p>2) makes it possible to process data without their prior spectral transformation operating with discrete counts of information signals.</p><p>The proposed NN type allows it to dynamically expand its own knowledge base of possible types of defects in controlled objects (pipelines) in the process of operation. With the help of the NN, soil pH was assessed for an UMP of 17G1S steel for three situations.</p>The above information is important for improving the methods for controlling oil-and-gas enterprise UMPs, in particular, the methods for a correct assessment of anode current density in metal defects taking into account nonlinear character of informative parameters.

Authors and Affiliations

Larysa Yuzevych, Ruslan Skrynkovskyy, Volodymyr Yuzevych, Vitalii Lozovan, Grzegorz Pawlowski, Mykhailo Yasinskyi, Ihor Ogirko

Keywords

Related Articles

Evaluation of gas separator effect on operability of gas-motor piston compressor valves

<p>To increase the efficiency of gas-lift oil and gas production, it is necessary to improve the operation of compressor stations, namely, to increase the reliability of the gas-motor piston compressor units installed in...

Improving a technique for the estimation and adjustment of counterbalance of sucker-rod pumping units’ drives

In order to reduce the impact of uneven load on the operation of drives at downhole sucker rod pumping units, it has been proposed, based on the results of this study, to apply an improved technique for estimating and ad...

Role of small addition of liquefied petroleum gas (LPG) on laminar burning velocity of hydrous ethanol

<p>Ethanol is an appropriate substitution for gasoline fuel in spark ignition engines. Ethanol has a high-octane number allowing to use it in the higher compression ratio of the engine. A better understanding of combusti...

Utilization of the prepyrolyzed technical hydrolysis lignin as a fuel for iron ore sintering

<p>A promising direction of technical hydrolysis lignin utilization is metallurgical production, primarily iron ore preparation and blast furnace process. A significant potential is concentrated in the sintering process....

The concept of a modular cyberphysical system for the early diagnosis of energy equipment

<p>We have proposed a concept of the modular cyberphysical system for the early diagnosis of industrial and household power equipment based on the application of approaches and standards of Industry 4.0, in particular th...

Download PDF file
  • EP ID EP666846
  • DOI 10.15587/1729-4061.2019.174488
  • Views 60
  • Downloads 0

How To Cite

Larysa Yuzevych, Ruslan Skrynkovskyy, Volodymyr Yuzevych, Vitalii Lozovan, Grzegorz Pawlowski, Mykhailo Yasinskyi, Ihor Ogirko (2019). Improving the diagnostics of underground pipelines at oil­and­gas enterprises based on determining hydrogen exponent (PH) of the soil media applying neural networks. Восточно-Европейский журнал передовых технологий, 4(5), 56-64. https://europub.co.uk./articles/-A-666846