Medical Database for Detecting Neoplastic Lesions in Human Colorectal Cancer with Deep Learning
Journal Title: Biomedical Journal of Scientific & Technical Research (BJSTR) - Year 2019, Vol 17, Issue 5
Abstract
Medical databases are fundamental for developing new techniques for early detection of neoplastic cells. They are however difficult to obtain, since the labelling of the images is often operator dependent, requires specialized skills and the written informed consent of the patient. The variability of structures in biological tissue poses a challenge to both manual and automated analysis of histopathology slides. Although some authors showed moderate to good agreement among expert pathologists, and satisfactory results on their intra-observer reliability, other studies found that even experienced pathologists frequently disagree on tissue classification, which may lead to the conclusion that solely using expert scoring as gold standard for histopathological assessment could be insufficient. Hence, there is a growing demand for robust computational methods in order to increase reproducibility of diagnoses. In this note we present a database containing images of preneoplastic and neoplastic colorectal tissues and in a forthcoming paper we will describe our proposed DL algorithm to classify them into the following categories: normal mucosa, early preneoplastic lesions, adenomas, cancer. Aim and Scope Colorectal cancer ranks among the three most common cancers in terms of both cancer incidence and cancer-related deaths in Western industrialized countries [1]. Every year in the world nearly 1.3 million new cases of CRC are reported and nearly 700.000 patients die [2]. Lifetime risk of colorectal cancer may reach 6% of the population living in developed countries. CRC is second in incidence in Europe only to lung cancer, and it causes around 204.000 deaths every year [3]. The age-specific incidence of colorectal cancer rises sharply after 35 years of age, with approximately 90% of cancers occurring in persons over 50 years old. As in other developed areas, in Italy CRC incidence ranks third for men (after prostate and lung cancers), and second for women (after breast cancer). The incidence for men had an upward trend until the mid of the first decade of the second millennium (+2.2% in the period 1999-2007) followed by a reduction (-6.8% per year after 2007), in part due to the activation of organized screening programs. The trend is similar in women: there was an increase (+2.1% /year in the period 1999-2006) and subsequently a reduction (-3.6% /year after 2006). The burden of the disease remains, however, serious in Italy as well as worldwide, because of the social impact, costs, and mortality. Accurate tumor grading is essential for patient survival and can be done most effectively in stained histopathological sections harvested via biopsy or during surgery. Our goal is to develop an effective classification strategy through the construction of an effective database for a DL analysis of the above mentioned biological data (Figure 1). A typical histopathological image of colon glands contains four tissue components: lumen, cytoplasm, epithelial cells, and stroma (connective tissue, blood vessels, nervous tissue, etc.). The epithelial cells form the gland boundary, enclosing cytoplasm and lumen, whereas stroma is not considered part of the gland. If we just consider non-cancerous (benign) glands, DL algorithms must effectively be able to deal with significant variability in shape, size, location, texture and staining of glands. Moreover, in cancerous cases gland objects can significantly differ from benign glands, and the presence of corrupted areas (artifacts) further exacerbates the problem. Therefore, machine learning approaches are predominantly used to develop robust models trained from labeled examples in order to cope with tissue variability. An effective algorithm for medical diagnoses needs large training datasets, in general extremely difficult to obtain, in order to correctly classify the different subtypes of benign and malignant gland types (see images below). Colorectal cancer presents heterogeneity during the adenoma carcinoma sequence [4].
Authors and Affiliations
Rita Fioresi, Francesco Faglioni, Paola Sena
Neurological Complications after Pertussis Vaccine. The Enigma Is Still Here
The significance of regular childhood vaccinations is universally accepted. However these vaccinations were reported to potentially have a long list of complications. This list includes disorders such as autism (measles...
3D-Printed Personalized Titanium Implant Design,Manufacturing and Verification for Bone Tumor Surgery of Forearm
The 3D printing implants are currently being used to reconstruct various parts of the bone tumor area other than maxillofacial surgery area. Thanks to 3D printing implants, patients can remain their anatomic function of...
Asynchronous Rhythm of Ad4BP/SF-1 and Per2 Expression in Adrenal Tumors of Cushing’s Syndrome Volume 7 - Issue 1
The relationship between circadian rhythm and autonomous cortisol secretion of adrenocortical lesions associated with Cushing’s syndrome is still unknown. We show here that in Y1 adrenocortical tumor cells, circadian rhy...
The Risk Associated to the Lack of Information about Clove Cigarettes
Indonesian clove cigarettes, commonly known as “kretek”, emerged around the 1880s, as a blend of tobacco and clove buds (Syzygium aromaticum [L.] Merrill & Perry) rolled into cornhusks. It is believed that the first use...
Can Medical Education be Enhanced by the World’s First 3d Printed Fascia Models and Plastinated Specimens of Fascia Superficialis and Profundus?
The evolution of fascia research is developing at an expediential rate ever since a con-gress with a specific focus on this ubiquitous tissue was first held at Harvard Medical School Conference Center in...