Numerical Analysis of Slope Stability in a Coal Mine Waste Dump Under Coupled Hydro-Mechanical-Thermal Influences: A Case Study of Maamba, Zambia
Journal Title: Journal of Civil and Hydraulic Engineering - Year 2025, Vol 3, Issue 2
Abstract
The instability of mining waste dumps poses significant environmental hazards, including loss of life, damage to infrastructure, and ecological degradation. The complex interdependence of Thermal, Hydraulic, and Mechanical (THM) processes has been increasingly recognised as a critical factor influencing slope stability. In this study, a coupled THM numerical model was developed using the finite element method (FEM) to evaluate slope stability in a coal mine waste dump in Maamba, Zambia. Key parameters, including stress distribution, displacement, pore water pressure, and temperature variations, were incorporated to achieve a comprehensive assessment of slope failure mechanisms. Field data and geotechnical investigations were integrated with advanced computational simulations to ensure realistic modelling. The findings demonstrated that conventional limit equilibrium methods (LEM) underestimated the impact of coupled processes on slope failure. The safety factor was observed to decrease by more than 30% due to THM interactions, with thermal gradients and hydro-mechanical (H-M) responses identified as primary contributors to slope instability. The results underscore the necessity of incorporating THM coupling in slope stability assessments, particularly in geotechnically sensitive mining environments. The proposed framework provides a scientifically grounded methodology for evaluating and mitigating landslide risks in mining waste dumps, offering valuable insights applicable to regions with similar geotechnical and climatic conditions. The findings contribute to the refinement of slope stability management strategies and provide a basis for the development of risk mitigation measures in vulnerable mining areas.
Authors and Affiliations
Lunenge Aggrey Lisulo, Oscar Kamasongo, Kalaluka Kwalombota
An Intelligent Recording Method for Field Geological Survey Data in Hydraulic Engineering Based on Speech Recognition
Field data collection is a crucial component of geological surveys in hydraulic engineering. Traditional methods, such as manual handwriting and data entry, are cumbersome and inefficient, failing to meet the demands of...
Regression Model for the Mechanical Properties of PVC-P Geomembranes with Scratch Damage
In response to the mechanical performance alterations of PVC-P geomembranes due to improper handling or subgrade particle action during construction and operation, a series of axial tensile tests on PVC-P geomembranes wi...
Evaluating Flood Hazard Mitigation through Sustainable Urban Drainage Systems in Bor, Jonglei State, South Sudan
In response to the escalating pressures of urbanization and population growth on the ecosystems and flood risks in Bor County, Jonglei State, South Sudan, this study proposes the implementation of Sustainable Urban Drain...
Calculation of Circumferential Stress in Steel Epoxy Sleeve-Reinforced Pipelines Under Internal Pressure
To address the lack of clear formulae for calculating the circumferential stress in steel epoxy sleeve-reinforced pipelines under internal pressure, this study constructs a mechanical model based on the specific stress c...
A Smoothed Particle Hydrodynamics Approach for One-Dimensional Dam Break Flow Simulation with Boussinesq Equations
The Smoothed Particle Hydrodynamics (SPH) method has been applied to solve the Boussinesq equations in order to simulate hypothetical one-dimensional dam break flows (DBFs) across varying depth ratios. Initial simulation...