Numerical solution of time fractional Schrödinger equation by using quadratic B-spline finite elements
Journal Title: Annales Mathematicae Silesianae - Year 2017, Vol 31, Issue
Abstract
In this article, quadratic B-spline Galerkin method has been employed to solve the time fractional order Schrödinger equation. Numerical solutions and error norms $L_2$ and $L_∞$ are presented in tables.
Authors and Affiliations
Alaattin Esen, Orkun Tasbozan
Numerical solution of time fractional Schrödinger equation by using quadratic B-spline finite elements
In this article, quadratic B-spline Galerkin method has been employed to solve the time fractional order Schrödinger equation. Numerical solutions and error norms $L_2$ and $L_∞$ are presented in tables.
Exponential convergence for Markov systems
Markov operators arising from graph directed constructions of iterated function systems are considered. Exponential convergence to an invariant measure is proved.
Fixed point theorems for two pairs of mappings satisfying a new type of common limit range property in G_p metric spaces
The purpose of this paper is to prove a general fixed point theorem for mappings involving almost altering distances and satisfying a new type of common limit range property in $G_p$ metric spaces. In the last part of th...
Properties and characterizations of convex functions on time scales
In this research we deal with algebraic properties and characterizations of convex functions in the context of a time scale; this notion of convexity has been studied for some other authors but the setting of properties...
Report of Meeting. The Sixteenth Debrecen-Katowice Winter Seminar Hernádvécse (Hungary), January 27–30, 2016
Report of Meeting. The Sixteenth Debrecen-Katowice Winter Seminar Hernádvécse (Hungary), January 27–30, 2016