ON DECRIPTIONS OF CLOSED IDEALS OF ANALYTIC AREA NEVANLINNA TYPE CLASSES IN A CIRCULAR RING ON A COMPLEX PLANE C

Journal Title: Проблемы анализа-Issues of Analysis - Year 2012, Vol 1, Issue 1

Abstract

We define certain new large area Nevanlinna type spaces in circular ring K on a complex plane and provide complete decriptions of ideals of these new scales of spaces. Our results extend some previously known assertions.

Authors and Affiliations

R. F. Shamoyan

Keywords

Related Articles

ГРАНИЧНОЕ ПОВЕДЕНИЕ МЕРОМОРФНЫХ ФУНКЦИЙ В МНОГОСВЯЗНЫХ ОБЛАСТЯХ

В первой части статьи доказывается аналог теоремы Каратеодори о граничном соответствии в случае конечносвязной области. Вторая часть посвящена доказательству аналога теоремы Плеснера (о структуре предельных множеств гран...

ON THE ALMOST PERIODIC AT INFINITY FUNCTIONS FROM HOMOGENEOUS SPACES

We consider homogeneous spaces of functions defined on the real axis (or semi-axis) with values in a complex Banach space. We study the new class of almost periodic at infinity functions from homogeneous spaces. The main...

ПЕРЕСЕЧЕНИЕ МНОЖЕСТВА ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ДЛЯ ДВУХ ФУНКЦИОНАЛОВ

В работе исследована экстремальная задача для линейного функционала в классе U' α. В частности, получен вид экстремальной функции.

ВЗАИМНЫЕ МУЛЬТИФРАКТАЛЬНЫЕ СПЕКТРЫ I. ТОЧНЫЕ СПЕКТРЫ

It has introduced the fine mutual multifractal spectra for Borel probability measures and received the estimations for these spectra.

ON COMPLEX HARMONIC TYPICALLY-REAL FUNCTIONS WITH A POLE AT THE POINT ZERO

Several mathematicians examined classes of meromorphic typically-real functions with a simple pole at the point zero. This article includes results concern class Q' H of complex harmonic typically-real functions with a p...

Download PDF file
  • EP ID EP234572
  • DOI 10.15393/j3.art.2012.1665
  • Views 96
  • Downloads 0

How To Cite

R. F. Shamoyan (2012). ON DECRIPTIONS OF CLOSED IDEALS OF ANALYTIC AREA NEVANLINNA TYPE CLASSES IN A CIRCULAR RING ON A COMPLEX PLANE C. Проблемы анализа-Issues of Analysis, 1(1), 24-31. https://europub.co.uk./articles/-A-234572