On the dimension of vertex labeling of k-uniform dcsl of k-uniform caterpillar

Abstract

A distance compatible set labeling (dcsl) of a connected graph $G$ is an injective set assignment $f : V(G) \rightarrow 2^{X},$ $X$ being a nonempty ground set, such that the corresponding induced function $f^{\oplus} :E(G) \rightarrow 2^{X}\setminus \{\emptyset\}$ given by $f^{\oplus}(uv)= f(u)\oplus f(v)$ satisfies $\mid f^{\oplus}(uv) \mid = k_{(u,v)}^{f}d_{G}(u,v) $ for every pair of distinct vertices $u, v \in V(G),$ where $d_{G}(u,v)$ denotes the path distance between $u$ and $v$ and $k_{(u,v)}^{f}$ is a constant, not necessarily an integer. A dcsl $f$ of $G$ is $k$-uniform if all the constant of proportionality with respect to $f$ are equal to $k,$ and if $G$ admits such a dcsl then $G$ is called a $k$-uniform dcsl graph. The $k$-uniform dcsl index of a graph $G,$ denoted by $\delta_{k}(G)$ is the minimum of the cardinalities of $X,$ as $X$ varies over all $k$-uniform dcsl-sets of $G.$ A linear extension ${\mathbf{L}}$ of a partial order ${\mathbf{P}} = (P, \preceq)$ is a linear order on the elements of $P$, such that $ x \preceq y$ in ${\mathbf{P}}$ implies $ x \preceq y$ in ${\mathbf{L}}$, for all $x, y \in P$. The dimension of a poset ${\mathbf{P}},$ denoted by $dim({\mathbf{P}}),$ is the minimum number of linear extensions on ${\mathbf{P}}$ whose intersection is `$\preceq$'. In this paper we prove that $dim({\mathcal{F}}) \leq \delta_{k}(P^{+k}_n),$ where ${\mathcal{F}}$ is the range of a $k$-uniform dcsl of the $k$-uniform caterpillar, denoted by $P^{+k}_n \ (n\geq 1, k\geq 1)$ on `$n(k+1)$' vertices.

Authors and Affiliations

K. Nageswara Rao, K. A. Germina, P. Shaini

Keywords

Related Articles

Parabolic by Shilov systems with variable coefficients

Because of the parabolic instability of the Shilov systems to change their coefficients, the definition parabolicity of Shilov for systems with time-dependent $t$ coefficients, unlike the definition parabolicity of Petro...

Generalized types of the growth of Dirichlet series

Let A∈(−∞,+∞] and Φ be a continuously on [σ0,A) function such that Φ(σ)→+∞ as σ→A−0. We establish a necessary and sufficient condition on a nonnegative sequence λ=(λn), increasing to +∞, under which the equality ¯¯¯¯¯¯¯¯...

On a necessary condition for Lp (0<p<1) -convergence (upper boundedness) of trigonometric series

In this paper we prove that the condition ∑2nk=[n2]λk(p)(|n−k|+1)2−p=o(1)(=O(1)), is a necessary condition for the Lp(0<p<1)-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some r...

Pointwise stabilization of the Poisson integral for the diffusion type equations with inertia

In this paper we consider the pointwise stabilization of the Poisson integral for the diffusion type equations with inertia in the case of finite number of parabolic degeneracy groups. We establish necessary and sufficie...

Convergence criterion for branched continued fractions of the special form with positive elements

In this paper the problem of convergence of the important type of a multidimensional generalization of continued fractions, the branched continued fractions with independent variables, is considered. This fractions are a...

Download PDF file
  • EP ID EP262984
  • DOI 10.15330/cmp.8.1.134-149
  • Views 54
  • Downloads 0

How To Cite

K. Nageswara Rao, K. A. Germina, P. Shaini (2016). On the dimension of vertex labeling of k-uniform dcsl of k-uniform caterpillar. Карпатські математичні публікації, 8(1), 134-149. https://europub.co.uk./articles/-A-262984