Optimising Drug Solubilisation in Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters
Journal Title: AAPS PharmSciTech - Year 2016, Vol 17, Issue 1
Abstract
The aim of this article was to construct a T–ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature–composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)–Eudragit® EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD–EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature–composition (T–ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid–solid curve in a F–H T–ϕ phase diagram. If extruded between the spinodal and liquid–solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F–H T–ϕ phase diagrams are valuable not only in the understanding drug–polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.
Authors and Affiliations
Shu Li, Yiwei Tian, David S. Jones, Gavin P. Andrews
Relationships Between the Properties of Self-Emulsifying Pellets and of the Emulsions Used as Massing Liquids for Their Preparation
Self-emulsifying pellets were prepared using microcrystalline cellulose, emulsions of caprylic/capric triglyceride, and three Cremophors (ELP, RH40, and RH60) at 1.5 and 2.3 weight ratios, and two drugs (furosemide and p...
Preparation of Effective and Safe Gene Carriers by Grafting Alkyl Chains to Generation 5 Polypropyleneimine
Gene therapy is a novel method to treat a variety of diseases including genetic disorders and cancer. Nonviral gene carriers have now gained considerable attention as gene carrier systems. Polyamidoamine (PAMAM) and poly...
Encapsulation of Acetylshikonin by Polyamidoamine Dendrimers for Preparing Prominent Nanoparticles
Acetylshikonin (AS) has demonstrated antitumor potential. However, the development of therapeutic applications utilizing AS is inhibited by its poor solubility in water. In the present work, polyamidoamine (PAMAM) dendri...
Tyloxapol Niosomes as Prospective Drug Delivery Module for Antiretroviral Drug Nevirapine
With the aim of assuring more patient compliant pharmacotherapy for acquired immuno deficiency syndrome, a formulation of the first line anti-retroviral drug, nevirapine (NVP), has been developed by encapsulating it with...
Effect of Hydroxyl Groups and Rigid Structure in 1,4-Cyclohexanediol on Percutaneous Absorption of Metronidazole
In a previous study, a synergistic retardation effect of 1,4-cyclohexanediol and 1,2-hexanediol on percutaneous absorption and penetration of metronidazole (MTZ) was discovered. A complex formation between 1,4-cyclohexan...