Peculiarities of Identifying a Power-generating Single-shaft GTE Mathematical Model
Journal Title: Проблеми машинобудування - Year 2018, Vol 21, Issue 4
Abstract
The processes of designing and developing gas turbine engines (GTE) are based on using mathematical models (MM), reflecting the physical picture of engine operation processes. One of the ways of improving the MM validity is its identification on engine bench test results. Identifying MMs of modern energy GTEs is a very demanding task due to the necessity to identify the main controllable engine parameters determined in the course of experimental studies, depending on a large number of the parameters that are not controlled during the experiment. In this regard, the actual direction of reducing the complexity of the process of identifying MMs is using identification software systems. Developed by the A. N. Podgorny Institute of Mechanical Engineering Problems of NASU, the methodology and means of identifying the parameters and characteristics of power plants, using experimental data (Otpimum software package), allows one to conduct a directed search for an optimal solution based on modern mathematical methods. This, in turn, leads to a reduction in identification execution time, increases the MM adequacy and allows one to more reliably determine the characteristics of engine components. The article proposes an approach to identifying a non-linear unit MM, with a detailed calculation of a turbine flow path to the level of blade rows on the D045 engine bench test results. It describes the choice of variable and controllable parameters as well as the ranges of their changes. The results of solving the identification problem showed the possibility of using the Optimum software for optimizing and identifying parameters and characteristics of power plants when identifying D045 GTE MMs. The use of the developed methodology for identifying GTE MMs that is based on bench test results, allows one to take into account the maximum number of variable variables and significantly reduce the complexity and time of this process. The analysis of the results shows that with significant deviations of GTE characteristics from design values, a large amount of a priori information is needed to solve the identification problem. On the basis of the information, ranges of changes of variable and controllable parameters are assigned, as well as their values in the first approximation.
Authors and Affiliations
Aleksandr L. Lyutikov
Influence of Thermal and Mechanical Factors on the Stressed State of Large Components of Hydrogenerator-Motors
The work presented contains a detailed analysis of the existing ultimate power air-cooled hydrogenerator-motor design. It is shown that the umbrella-type hydrogenerator crosspiece perceives dynamic loads caused by forces...
Calculation of Indicators of Reliability of Technical Systems by the Typical Structural Scheme Method
A method for calculating the indicators of structural reliability of systems with a large number of elements is presented. The method is based on the use of typical structural schemes, reflecting the concept of connectio...
First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities
When designing different kinds of structures and forecasting the strength of mine workings in rock and geotechnical mechanics, there occur problems in which it is necessary to know the stress-strain state of a half-space...
Prediction of Flow Accelerated Corrosion of NPP Pipeline Elements by Network Simulation Method
Based on a comprehensive approach that uses the computer simulation of the process of destroying structural materials and technology of self-learning neural networks, a methodology has been developed for predicting the r...
Solution to Non-stationary Inverse Heat Conduction Problems for Multi-layer Bodies, Based on Effective Search for the Regularization Parameter
To obtain a stable solution to the inverse heat conduction problem (IHCP), the article uses A. N. Tikhonov's method with an effective algorithm for finding the regularization parameter. The required heat flux at the boun...