Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
Journal Title: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica - Year 2017, Vol 71, Issue 2
Abstract
In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W1LΦ([0,T]). We employ the direct method of calculus of variations and we consider a potential function F satisfying the inequality |∇F(t,x)|≤b1(t)Φ′0(|x|)+b2(t), with b1,b2∈L1 and certain N-functions Φ0.
Authors and Affiliations
Sonia Acinas, Fernando Mazzone
Generalized trend constants of Lipschitz mappings
In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point...
The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
Let T = (V, E) be a 3-uniform linear hypertree. We consider a blow-up hypergraph B[T ]. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph B[T ] of the hypertree T , w...
The generalized Day norm. Part II. Applications
In this paper we prove that for each 1<p,p~<∞, the Banach space (lp~,∥⋅∥p~) can be equivalently renormed in such a way that the Banach space (lp~,∥⋅∥L,α,β,p,p~) is LUR and has a diametrically complete set with empty int...
On the existence of connections with a prescribed skew-symmetric Ricci tensor
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
On l1-preduals distant by 1
For every predual X of l1 such that the standard basis in l1 is weak* convergent, we give explicit models of all Banach spaces Y for which the Banach–Mazur distance d(X, Y ) = 1. As a by-product of our considerations, we...