Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting

Abstract

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W1LΦ([0,T]). We employ the direct method of calculus of variations and we consider a potential function F satisfying the inequality |∇F(t,x)|≤b1(t)Φ′0(|x|)+b2(t), with b1,b2∈L1 and certain N-functions Φ0.

Authors and Affiliations

Sonia Acinas, Fernando Mazzone

Keywords

Related Articles

Generalized trend constants of Lipschitz mappings

In 2015, Goebel and Bolibok defined the initial trend coefficient of a mapping and the class of initially nonexpansive mappings. They proved that the fixed point property for nonexpansive mappings implies the fixed point...

The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm

Let T = (V, E) be a 3-uniform linear hypertree. We consider a blow-up hypergraph B[T ]. We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph B[T ] of the hypertree T , w...

The generalized Day norm. Part II. Applications

In this paper we prove that for each 1<p,p~<∞, the Banach space (lp~,∥⋅∥p~) can be equivalently renormed in such a way that the Banach space (lp~,∥⋅∥L,α,β,p,p~) is LUR and has a diametrically complete set with empty int...

On the existence of connections with a prescribed skew-symmetric Ricci tensor

We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.

On l1-preduals distant by 1

For every predual X of l1 such that the standard basis in l1 is weak* convergent, we give explicit models of all Banach spaces Y for which the Banach–Mazur distance d(X, Y ) = 1. As a by-product of our considerations, we...

Download PDF file
  • EP ID EP305573
  • DOI 10.17951/a.2017.71.2.1
  • Views 107
  • Downloads 0

How To Cite

Sonia Acinas, Fernando Mazzone (2017). Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting. Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica, 71(2), 1-16. https://europub.co.uk./articles/-A-305573