Polymerization of sterically hindered a-olefins with singlesite group 4 metal catalyst precursors

Journal Title: Polyolefins Journal - Year 2017, Vol 4, Issue 1

Abstract

A variety of group 4 metal catalytic systems (C2-symmetric {EBTHI}-, {SBI}-type zirconocene complexes (C2-1–4); C1-symmetric (C1-5–8) and Cs-symmetric (Cs-9) {Cp/Flu}-type zirconocene complexes; Cp*2ZrCl2 (Cp* 2-10)), half-metallocene complexes (CpTiCl3, HM-11), constrained-geometry (CGC-12) titanium catalysts) and post-metallocene catalysts (Dow’s ortho-metallated amido-pyridino hafnium complex (PM-13)) have been screened in the polymerization of the sterically demanding 3-methylbut-1-ene (3MB1) and vinylcyclohexane (VCH). All systems proved to be sluggishly active under regular conditions (toluene, 20°C; MAO as cocatalyst) towards 3MB1, with productivities in the range 0–15 kg.mol–1.h–1. Higher productivities (up to 75 kg.mol–1.h–1) were obtained in the polymerization of VCH with C1-symmetric metallocene catalysts under the same conditions, while Cs-symmetric systems were found to be completely inactive. For both 3MB1 and VCH, under all conditions tested, the most productive catalyst appeared to be Dow’s post-metallocene system PM-13/MAO. Optimization of the polymerization conditions led to a significant enhancement of the productivities of this catalyst system towards both 3MB1 and VCH up to 390 and 760 kg.mol–1.h–1, respectively (Tpolym = 70°C). 13C NMR spectroscopy studies revealed that all isolated P(3MB1) and P(VCH) polymers were isotactic, regardless the nature/symmetry of the (pre)catalyst used. The nature of the chain-end groups in P(3MB1) is consistent with two different chaintermination mechanisms, namely b-H elimination/transfer-to-monomer for C2-1/MAO and chain-transfer to Me3Al for PM-13/MAO systems, respectively. For polymerization of VCH with PM-13/MAO at 70°C, b-H elimination / transfer-to-monomer appeared to be the main chain termination reaction.

Authors and Affiliations

Gabriel Theurkauff, Katty Den Dauw, Olivier Miserque, Aurélien Vantomme, Jean-Michel Brusson, Jean-François Carpentier, Evgeny Kirillov

Keywords

Related Articles

Effects of FeCl3 doping on the performance of MgCl2/TiCl4/DNPB catalyst in 1-hexene polymerization

The aim of this study was to examine the effect of catalyst doping on the performance of MgCl2. EtOH/TiCl4 catalyst system. In this regard, a series of undoped as well as FeCl3-doped catalysts was prepared and employed i...

Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts

Highly siliceous ZSM-5 nanocatalysts can dehydrate methanol to a wide range of hydrocarbons. In this study, the development of hierarchical H-ZSM-5 nanocatalysts (Si/Al=200) were reported for the methanol-toolefins (MTO)...

Theoretical screening of zeolites for membrane separation of propylene/propane mixtures

In this paper, the performances of potential zeolite membranes were estimated by the Maxwell-Stefan model and then they were placed in Robeson plot of propylene/propane separation. Additionally, the effects of feed press...

An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/ poly(ethylene-co-1-butene)-graft-maleic anhydride/organoclay nanocomposites

Nanocomposites based on polyamide 6 (PA6) and poly(ethylene-co-1-butene)-graft-maleic anhydride (EB-g- MAH) blends have been prepared via melt mixing. The effect of blend ratio and organoclay concentration on the crystal...

Recent advances in the polymerization of butadiene over the last decade

The stereospecific polymerization of conjugated dienes began in 1954 with the first catalysts obtained by combining TiCl4 or TiCl3 with aluminum-alkyls, i.e. the catalytic systems previously employed for ethylene and pro...

Download PDF file
  • EP ID EP283203
  • DOI 10.22063/POJ.2016.1395
  • Views 163
  • Downloads 0

How To Cite

Gabriel Theurkauff, Katty Den Dauw, Olivier Miserque, Aurélien Vantomme, Jean-Michel Brusson, Jean-François Carpentier, Evgeny Kirillov (2017). Polymerization of sterically hindered a-olefins with singlesite group 4 metal catalyst precursors. Polyolefins Journal, 4(1), 123-136. https://europub.co.uk./articles/-A-283203