Predicting the Effect of Climate Change on the Suitability of Canola (Brassica napus L.) Cultivation Land using SDSM and Lars-WG Models in Mazandaran Province
Journal Title: Journal of Agroecology - Year 2024, Vol 15, Issue 4
Abstract
IntroductionIn recent years, the heightened concentration of greenhouse gases has brought increased attention to the pressing issue of climate change. Therefore, monitoring climatic variables to prevent the adverse effects of climate change is more important than ever. In the pursuit of long-term climatic forecasting and the assessment of their evolving patterns, various international scientific societies have concentrated their efforts on understanding the extent of climate change and devising measures to counter its adverse effects. The development of general circulation models of the atmosphere (GCM) has been a significant stride in this direction. However, GCMs may lack precision in predicting minor changes at a local scale. To address this limitation, the utilization of downscaling models such as SDSM and Lars_WG (that were used here) becomes imperative. These models serve as essential tools for simulating the viability of cultivating agricultural species in the future, especially when considering localized impacts. Because climate change will probably change the conditions for growing canola, as one of the strategic and prominent crops in Iran, studying the effects of this worldwide event on the canola-grown fields in the future is needed. Materials and MethodsIn this research, using temperature and precipitation forecasting models along with GIS functions and hierarchical analysis process (AHP), canola suitability classes for 2050 were determined in Mazandaran Province. For this, 37 meteorological and synoptic stations were involved, and climatic data (including temperatures and precipitation) were generated under three RCP scenarios (2.6, 4.5, 8.5). In this study, we utilized two general circulation models (Can-ESM2 and HadGEM2-ES) that had been recommended for application in the study area. Results and DiscussionA comparison of the involved models showed that the SDSM model was superior in predicting temperature, while the Lars-WG model performed better in predicting precipitation. The results for the land suitability revealed that the changes in climatic variables in the future would lead to changing the suitability of agricultural lands for growing canola. The examination of temperature change maps in the investigated region revealed that both minimum and maximum temperature variables are poised to rise under climate change scenarios, with a more pronounced increase anticipated in maximum temperatures. The findings indicate that the projected temperature increase in the future will establish more conducive conditions for canola cultivation. Additionally, precipitation patterns exhibit an increase in both RCP 2.6 and 4 scenarios, with a more substantial rise in the RCP 2.6 scenario. Conversely, the RCP 8.5 scenario predicts a decline in precipitation levels. Top of FormAlso, considering the climate change scenarios, the spatial distribution and the area of each suitability class changed slightly, so the high-suitable class will extend under RCP2.6, especially toward the center parts of the study area. Under RCP 8.5 and RCP 4.5 scenarios, not only suitable lands were not considerable, but also the less suitable land extended to the southern and western parts of the study area. ConclusionThe output of the land suitability maps showed that climate change would change the suitability of the studied agricultural lands in the future. Also, with the implementation of the climate change scenarios, the area and geographical distribution of detected classes will change. In general, in the optimistic scenario, the lands will be more appropriate for canola cultivation and will cover a wider area. In other scenarios, the conditions for canola cultivation in the lands of Mazandaran will be more unsuitable compared to the present, and the decrease in the level of suitability will be more evident in the western and southern lands of the province. Therefore, solutions such as the use of more compatible cultivars and changes in agricultural management in facing new conditions in these areas should be considered. The outcomes of these studies offer practical insights for shaping regional planting strategies, aiding decisions on crop inclusion or exclusion, and informing the overall design of agricultural patterns in the area
Authors and Affiliations
Mohsen Abshenas,Behnam Kamkar,Afshin Soltani,Hossein Kazemi,
Simulation of Sugar Beet (Beta vulgaris L.) Root Yield and Water Productivity in Response to Different Sowing Date and Irrigation Treatments Using SUCROS Model
Introduction: Water is considered one of the main factors driving agricultural activities. It is predicted that more than 67% of the world's population will suffer from water shortages in their habitats by 2050. Theref...
Assessing the Environmental Parameters of the Rice (Oryza sativa L.( in the Second Cropping and Ratoon Systems using Life Cycle Assessment (LCA)
IntroductionRice (Oryza sativa L.) is one of the most important food resources of more than half of the world's population. Rice, as the second most strategic crop, is the most important cereal after wheat. Excessive use...
Monitoring the Sustainability of Cropland of Boland Village in Sistan and Baluchistan Province, Iran using Emergy Approach
Introduction Sustainability analysis of agricultural ecosystems is important in their decision-making and proper management. Quantifying the sustainability of cropping agroecosystems can provide solutions to achieve pos...
Investigation of Aboveground Interspecific Interaction in the Intercropping Culture of Soybean (Glycine max (L) Merrill) and Niger (Guizotia abyssinica Cass)
IntroductionToday, increasing sustainability in agriculture is essential to meet future food needs. In this regard, the intercropping culture has been considered as viable and environmentally friendly approach to sustain...
Effect of Trichoderma longibrachiatum and Chitosan Spraying on Morphophysiological Characteristics and Yield of Sweet Basil (Ocimum basilicum L.) under Deficit Irrigation Conditions
Introduction Drought is one of the most important environmental stressors that adversely affects agricultural products, especially in arid and semi-arid regions. Using Trichoderma fungus along with biopolymers such as c...