Printing amphotericin B on microneedles using matrixassisted pulsed laser evaporation
Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 2
Abstract
Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentrationdependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.
Authors and Affiliations
Roger Sachan, Panupong Jaipan, Jennifer Y. Zhang, Simone Degan, Detlev Erdmann, Jonathan Tedesco, Lyndsi Vanderwal, Shane J. Stafslien, Irina Negut, Anita Visan, Gabriela Dorcioman, Gabriel Socol, Rodica Cristescu, Douglas B. Chrisey and Roger J. Narayan
Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion
Tissue engineering approaches have been adopted to address challenges in osteochondral tissue regeneration. Single phase scaffolds, which consist of only one single material throughout the whole structure, have been used...
3D bioprinting for tissue engineering: Stem cells in hydrogels
Surgical limitations require alternative methods of repairing and replacing diseased and damaged tissue. Regenerative medicine is a growing area of research with engineered tissues already being used successfully in pati...
Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective
Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over th...
Producing hip implants of titanium alloys by additive manufacturing
Additive manufacturing (AM) technologies, in particular Selective Laser Melting (SLM) allows the production of complex-shaped individual implants from titanium alloys with high biocompatibility, mechanical properties, an...
Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration
Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements such as...