Simulation and Experimental Analysis of a Demonstrative Solar Heating and Cooling Plant Installed in Naples (Italy)

Journal Title: American Journal of Engineering and Applied Sciences - Year 2016, Vol 9, Issue 4

Abstract

Abstract In this study the model of a Solar Heating and Cooling (SHC) system and its experimental setup are presented. The SHC system under investigation is a demonstration plant installed in Naples, based on flat plate solar collectors and a single-stage LiBr-H2O absorption chiller. In addition, two vertical tanks are installed as storage system. The balance of system includes: A cooling tower, pumps, valves, safety devices and pipes. The absorption chiller is powered only by solar energy, since there are devices for auxiliary thermal energy. The experimental setup also includes a number of meters (temperature, pressure, flow rate and radiation) to measure, collect and control the prototypal system. The experimental plant is dynamically designed and simulated in order to calculate its energetic and economic performance parameters. This analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. Furthermore, a parametric analysis is implemented, aiming at determining the set of the synthesis/design variables that maximize system performances. The model was validated by the first experimental results obtained by the operation of the solar cooling system. Results show that, although flat-plate solar collectors have been specially designed for this kind of application, their operating temperature is often too low to drive the absorption chiller. In addition, the system performance is not particularly sensitive to the storage volume whereas the thermal capacity of the solar field is lower than the absorption chiller demand, determining a very discontinuous operation of the chiller itself. Copyright © 2016 Annamaria Buonomano, Francesco Calise, Massimo Dentice d'Accadia, Raffaele Vanoli and Maria Vicidomini. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Authors and Affiliations

Annamaria Buonomano, Francesco Calise, Massimo Dentice d’Accadia, Raffaele Vanoli, Maria Vicidomini

Keywords

Related Articles

A Review on Cognitive Radio for Next Generation Cellular Network and its Challenges

Abstract Cognitive Radio (CR) is considered an intelligent technology. It improves the utilization of the radio spectrum. The increasing number of new devices has resulted in growing congestion of the ISM bands. FCC iss...

Something about the Balancing of Thermal Motors

Abstract Internal combustion engines in line (regardless of whether the work in four-stroke engines and two-stroke engines Otto cycle engines, diesel and Lenoir) are, in general, the most used. Their problem of balancin...

Effect of Nano Silica on the Compressive Strength of Harden Cement Paste at Different Stages of Hydration

Effect of Nano Silica on the Compressive Strength of Harden Cement Paste at Different Stages of Hydration Justin Montgomery, Taher M. Abu-Lebdeh, Sameer A. Hamoush and Miguel Picornell DOI : 10.3844/ajeassp.2016.166.177...

Integration of Human Factor in Design Ergonomics: Example of a High Speed Train Cabin Design

Abstract The development of new technologies and technical progress has accelerated man/machine substitution. Work is disappearing in its human form. This technical progress has not avoided certain catastrophes occurrin...

Surface Level Estimator-An Automated Contouring Instrument

Surface Level Estimator-An Automated Contouring Instrument Varun Sai Chinthala and Gajendra Dixit DOI : 10.3844/ajeassp.2017.733.737 American Journal of Engineering and Applied Sciences Volume 10, Issue 3 Pages 733-7...

Download PDF file
  • EP ID EP202247
  • DOI 10.3844/ajeassp.2016.798.813
  • Views 107
  • Downloads 0

How To Cite

Annamaria Buonomano, Francesco Calise, Massimo Dentice d’Accadia, Raffaele Vanoli, Maria Vicidomini (2016). Simulation and Experimental Analysis of a Demonstrative Solar Heating and Cooling Plant Installed in Naples (Italy). American Journal of Engineering and Applied Sciences, 9(4), 798-813. https://europub.co.uk./articles/-A-202247