Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds
Journal Title: International Journal of Bioprinting - Year 2020, Vol 6, Issue 1
Abstract
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solvent-based extrusion (SBE) 3D printing is a popular 3D printing method, which enables incorporation of cells during the scaffold printing process. The scaffold can be customized by optimizing the scaffold structure, biomaterial, and cells to mimic the properties of natural tissue. However, several technical challenges prevent SBE 3D printing from translation to clinical use, such as the properties of current biomaterials, the difficulties associated with simultaneous control of multiple biomaterials and cells, and the scaffold-to-scaffold variability of current 3D printed scaffolds. In this review paper, a summary of SBE 3D printing for tissue engineering (TE) is provided. The influences of parameters such as ink biomaterials, ink rheological behavior, crosslinking mechanisms, and printing parameters on scaffold fabrication are considered. The printed scaffold structure, mechanical properties, degradation, and biocompatibility of the scaffolds are summarized. It is believed that a better understanding of the scaffold fabrication process and assessment methods can improve the functionality of SBE-manufactured 3D printed scaffolds.
Authors and Affiliations
Bin Zhang, Rodica Cristescu, Douglas B. Chrisey, Roger J. Narayan
Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research
In this article, a hybrid retina construct was created via three-dimensional (3D) bioprinting technology. The construct was composed of a PCL ultrathin membrane, ARPE-19 cell monolayer and Y79 cell-laden alginate/pluroni...
In vitro pre-vascularization strategies for tissue engineered constructs–Bioprinting and others
Tissue-engineered products commercially available today have been limited to thin avascular tissue such as skin and cartilage. The fabrication of thicker, more complex tissue still eludes scientists today. One reason for...
Artificial vascularized scaffolds for 3D-tissue regeneration — a report of the ArtiVasc 3D Project
The aim of this paper is to raise awareness of the ArtiVasc 3D project and its findings. Vascularization is one of the most important and highly challenging issues in the development of soft tissue. It is necessary to su...
A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network
Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone...
Uncovering 3D bioprinting research trends: A keyword network mapping analysis
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000...