Sublingual Diffusion of Epinephrine Microcrystals from Rapidly Disintegrating Tablets for the Potential First-Aid Treatment of Anaphylaxis: In Vitro and Ex Vivo Study

Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 5

Abstract

For the first-aid treatment of anaphylaxis, epinephrine (Epi) 0.3 mg intramuscular (IM) injection in the thigh is the drug of choice. Epi auto-injectors are widely recommended for anaphylaxis treatment in community settings but not necessarily carried or used as prescribed when anaphylaxis occurs. We therefore developed rapidly disintegrating sublingual tablets (RDSTs) as an alternative noninvasive dosage form. Our objective in this study was to evaluate the effect of reducing Epi particle size on its in vitro and ex vivo diffusion, with the goal of enhancing Epi sublingual absorption from Epi RDSTs. Epi particle size was reduced by top-bottom technique using a microfluidizer for one pass at 30,000 Psi. The micronized Epi crystals (Epi-MC) were characterized using Zetasizer, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Epi RDSTs were formulated and manufactured using our previously developed method. In vitro and ex vivo diffusion of Epi 10, 20, and 40 mg RDSTs and Epi-MC 10 and 20 mg RDSTs (n = 4) were evaluated using Franz cells. Epi 10 mg solution was used as a control. Mean (±standard deviation (SD)) Epi particle size was successfully reduced from 131.8 ± 10.5 to 2.5 ± 0.4 μm. Cumulative Epi diffused and influx from 40 mg Epi RDSTs and 20 mg Epi-MC RDSTs were not significantly different from each other in vitro and ex vivo (p > 0.05). Also, Epi permeability from 20 mg Epi-MC RDSTs was significantly higher than from the rest (p < 0.05). Epi-MC RDSTs improved Epi diffusion twofold and might have the potential to reduce the Epi dose needed in RDSTs by 50%.

Authors and Affiliations

Mutasem M. Rawas-Qalaji, Shima Werdy, Ousama Rachid, F. Estelle R. Simons, Keith J. Simons

Keywords

Related Articles

Development of an Abuse- and Alcohol-Resistant Formulation Based on Hot-Melt Extrusion and Film Coating

This study focused on the development of flexible (i.e., deformable) multiple-unit pellets that feature (i) a prolonged drug release, (ii) drug abuse deterrence, and (iii) a minimal risk of alcohol-induced dose dumping (...

Spontaneous Emulsification of Nifedipine-Loaded Self-Nanoemulsifying Drug Delivery System

Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their...

Application of Physiologically Based Absorption Modeling to Formulation Development of a Low Solubility, Low Permeability Weak Base: Mechanistic Investigation of Food Effect

Physiologically based pharmacokinetic (PBPK) modeling has been broadly used to facilitate drug development, hereby we developed a PBPK model to systematically investigate the underlying mechanisms of the observed positiv...

Advances in Metered Dose Inhaler Technology: Hardware Development

Pressurized metered dose inhalers (MDIs) were first introduced in the 1950s and they are currently widely prescribed as portable systems to treat pulmonary conditions. MDIs consist of a formulation containing dissolved o...

Effect of Simultaneous Administration of Dihydroxyacetone on the Diffusion of Lawsone Through Various In Vitro Skin Models

Unprotected sunlight exposure is a risk factor for a variety of cutaneous cancers. Topically used dihydroxyacetone (DHA) creates, via Maillard reaction, chemically fixed keratin sunscreen in the stratum corneum with sign...

Download PDF file
  • EP ID EP682316
  • DOI  10.1208/s12249-015-0306-0
  • Views 87
  • Downloads 0

How To Cite

Mutasem M. Rawas-Qalaji, Shima Werdy, Ousama Rachid, F. Estelle R. Simons, Keith J. Simons (2015). Sublingual Diffusion of Epinephrine Microcrystals from Rapidly Disintegrating Tablets for the Potential First-Aid Treatment of Anaphylaxis: In Vitro and Ex Vivo Study. AAPS PharmSciTech, 16(5), -. https://europub.co.uk./articles/-A-682316