ТЕОРЕМА РЕГУЛЯРНОСТИ УБЫВАНИЯ В ЛИНЕЙНО-ИНВАРИАНТНЫХ СЕМЕЙСТВАХ ФУНКЦИЙ
Journal Title: Проблемы анализа-Issues of Analysis - Year 2006, Vol 13, Issue
Abstract
In this paper it is proved the regularity theorem for linearly invariant families of analytic function in the unit disk and some results, connected with this theorem.
Authors and Affiliations
Е. Г. ГАНЕНКОВА
О НОСИТЕЛЯХ МАКСИМАЛЬНЫХ СЦЕПЛЕННЫХ СИСТЕМ
This article is devoted to the functor of superextension. By definition, the superextansion of a compact space consist of all maximal linked systems of that space. It is well known that the support of a maximal linked sy...
ТЕОРЕМА РЕГУЛЯРНОСТИ УБЫВАНИЯ В ЛИНЕЙНО-ИНВАРИАНТНЫХ СЕМЕЙСТВАХ ФУНКЦИЙ
In this paper it is proved the regularity theorem for linearly invariant families of analytic function in the unit disk and some results, connected with this theorem.
РАСПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ ДЕДЕКИНДА В КЛАССАХ ВЫЧЕТОВ
В работе устанавливается критерий слабо равномерного рас- пределения функции Дедекинда ψ(n) и приводится асимптоти- ческий ряд для распределения ее значений по классам вычетов, взаимно простых с модулем.
Sharp estimates of products of inner radii of non-overlapping domains in the complex plane
In the paper we study a generalization of the extremal problem of geometric theory of functions of a complex variable on non-overlapping domains with free poles: Fix any γ ∈ R + and find the maximum (and describe all ext...
THE GENERALIZED KOEBE FUNCTION
We observe that the extremal function for |a 3| within the class U' α (see Starkov [1]) has as well the property that max|A 4|>4.15, if α=2. The problem is equivalent to the global estimate for Meixner-Pollaczek polynomi...