Trace Cd(II), Pb(II) and Ni(II) ions extraction and preconcentration from different water samples by using Ghezeljeh montmorillonite nanoclay as a natural new adsorbent

Journal Title: Journal of Water and Environmental Nanotechnology - Year 2017, Vol 2, Issue 1

Abstract

This investigate presents the extraction-preconcentration of Lead, Cadmium, and Nickel ions from water samples using Ghezeljeh montmorillonite nanoclay or “Geleh-Sar-Shoor” (means head-washing clay) as a natural and native new adsorbent in batch single element systems. The Ghezeljeh clay is categorized by using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy-Energy Dispersive Spectrometer Operating (SEM-EDS), X-ray Diffractometry (XRD), X-ray Fluorescence (XRF), Cation Exchange Capacity (CEC) measurements, Surface property valuation (SBET) by the BET method from nitrogen adsorption isotherms and Zeta potential. According to BET theory, the specific surface area of Ghezeljeh nanoclay was computed as 19.8 m2 g-1 whereas the cation exchange capacity was determined as 150 meq (100 g-1). The results of XRD, FT-IR, XRF, zeta potential, BET surface area and CEC of the Ghezeljeh clay confirm that montmorillonite is the dominant mineral phase. Based on SEM images of clay, it can be seen that the distance between the plates is nm level. For all three ions, the limit of detection, the limit of quantification, dynamic linear range, preconcentration factor, and the adsorption capacity were obtained. The result of several interfering ions was considered. The Ghezeljeh nanoclay as a new adsorbent and experimental method were effectively used for the extraction of heavy metals (Lead, Cadmium, and Nickel) in a variety of real water samples.

Authors and Affiliations

Keywords

Related Articles

Application of Sulfur-Modified Magnetic Nanoparticles for Cadmium Removal from Aqueous Solutions

Even at low levels, heavy metals are toxic and can damage living things. They do not break down or decompose and tend to build up in plants, animals, and people causing health concerns. Magnetic nanoparticles (MNPs) can...

Carboxymethyl-β-cyclodextrin Modified Magnetic Nanoparticles for Effective Removal of Arsenic from Drinking Water: Synthesis and Adsorption Studies

The β-cyclodextrin coated magnetic nanoparticles were prepared by the surface modification of Fe3O4 magnetic nanoparticles using carboxymethyl-β-cyclodextrin. Prepared nanoparticles were characterized by X-ray diffractio...

Effects of operating parameters in sweeping gas membrane distillation process: Numerical simulation of Persian Gulf seawater desalination

In this communication, an advanced, simultaneous mass and heat transfer model has been developed to take a meticulous glance on the influences of different parameters on Persian Gulf seawater desalination using Sweeping...

Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C,S co-doped TiO2 nanoparticles

This paper describes the photocatalytic degradation of Reactive Blue 19 (RB-19) and Reactive Red 76 (RR-76) dyes pollutant in the industrial wastewater using TiO2, C-doped TiO2 (C-TiO2), S-doped TiO2 (S-TiO2) and C,S co-...

Catalytic oxidation of naphtol blue black in water: Effect of Operating Parameters and the Type of Catalyst

The main objective of this work is to study the oxidation of naphthol blue black (NBB) in aqueous solution by hydrogen peroxide using a recyclable Dawson type heteropolyanion [H1.5Fe1.5P2W12Mo6O61.23H2O] as catalyst. The...

Download PDF file
  • EP ID EP335713
  • DOI 10.7508/jwent.2017.01.006
  • Views 119
  • Downloads 0

How To Cite

(2017). Trace Cd(II), Pb(II) and Ni(II) ions extraction and preconcentration from different water samples by using Ghezeljeh montmorillonite nanoclay as a natural new adsorbent. Journal of Water and Environmental Nanotechnology, 2(1), 39-51. https://europub.co.uk./articles/-A-335713