A novel 3D printing method for cell alignment and differentiation
Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1
Abstract
The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic dispensing system. This apparatus can prepare topographic guidance features for cell orientation and then bioprint cells directly onto them. Topographic guidance features generate cues that influence adhered cell morphology and phenotype. The robotic dispensing system was modified to include a sharpened stylus that etched on a polystyrene surface. The same computer-aided design (CAD) software was used for both precision control of etching and bioink deposition. Various etched groove patterns such as linear, concentric circles, and sinusoidal wave patterns were possible. Fibroblasts and mesenchymal stem cells (MSC) were able to sense the grooves, as shown by their elongation and orientation in the direction of the features. The orientated MSCs displayed indications of lineage commitment as detected by fluorescence-activated cell sorting (FACS) analysis. A 2% gelatin bioink was then used to dispense cells onto the etched features using identical, programmed co-ordinates. The bioink allows the cells to contact sense the pattern while containing their deposition within the printed pattern.
Authors and Affiliations
Ramya Bhuthalingam, Pei Qi Lim, Scott A Irvine, Animesh Agrawal, Priyadarshini S Mhaisalkar, Jia An, Chee Kai Chua, Subbu Venkatraman
A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing
Today, additive manufacturing (AM) is implemented in medical industry and profoundly revolutionizes this area. This approach consists of producing parts by additions of layers of successive materials and offers advantage...
Uncovering 3D bioprinting research trends: A keyword network mapping analysis
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000...
Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solve...
In vitro pre-vascularization strategies for tissue engineered constructs–Bioprinting and others
Tissue-engineered products commercially available today have been limited to thin avascular tissue such as skin and cartilage. The fabrication of thicker, more complex tissue still eludes scientists today. One reason for...
Extrusion-based 3D food printing – Materials and machines
To help people with dysphagia increase their food intake, 3D printing can be used to improve the visual appeal of pureed diets. In this review, we have looked at the works done to date on extrusion-based 3D food printing...