An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory
Journal Title: Opto-Electronic Advances - Year 2018, Vol 1, Issue 7
Abstract
Graphene oxide (GO) ultrathin flat lenses have provided a new and viable solution to achieve high resolution, high efficiency, ultra-light weight, integratable and flexible optical systems. Current GO lenses are designed based on the Fresnel diffraction model, which uses a paraxial approximation for low numerical aperture (NA) focusing process. Herein we develop a lens design method based on the Rayleigh-Sommerfeld (RS) diffraction theory that is able to unambiguously determine the radii of each ring without the optimization process for the first time. More importantly, the RS design method is able to accurately design GO lenses with arbitrary NA and focal length. Our design is experimentally confirmed by fabricating high NA GO lenses with both short and long focal lengths. Compared with the conventional Fresnel design methods, the differences in ring positions and the resulted focal length are up to 13.9% and 9.1%, respectively. Our method can be further applied to design high performance flat lenses of arbitrary materials given the NA and focal length requirements, including metasurfaces or other two-dimensional materials.
Authors and Affiliations
Guiyuan Cao, Xiaosong Gan, Han Lin, Baohua Jia*
Sensing and lasing applications of whispering gallery mode microresonators
Optical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong eva...
Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels
We report the generation of high energy 2 μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system. The all-fiber configuration was realized by a flexible large-mode area photonic crystal...
Mid-infrared all-fiber gain-switched pulsed laser at 3 μm
Mid-infrared (MIR) fiber pulsed lasers are of tremendous application interest in eye-safe LIDAR, spectroscopy, chemi-cal detection and medicine. So far, these MIR lasers largely required bulk optical elements, complex fr...
A review on control methodologies of disturbance rejections in optical telescope
Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes. In this paper, the state of art control methods—proportional integral (PI) control, linear quadrati...
Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking
Proteins are a class of biomaterials having a vast array of functions, including the catalysis of metabolic reactions, DNA replication, stimuli response and transportation of molecules. Recent progress in laser-based fab...