Cauchy projectors on non-smooth and non-rectifiable curves
Journal Title: Проблемы анализа-Issues of Analysis - Year 2019, Vol 8, Issue 1
Abstract
Let f (t) be defined on a closed Jordan curve Γ that divides the complex plane on two domains D + , D − , ∞ ∈ D − . Assume that it is representable as a difference f (t) = F + (t) − F − (t), t ∈ Γ, where F ± (t) are limits of a holomorphic in C \ Γ function F (z) for D ± 3 z → t ∈ Γ, F (∞) = 0. The mappings f → F ± are called Cauchy projectors. Let H ν (Γ) be the space of functions satisfying on Γ the Hölder condition with exponent ν ∈ (0,1]. It is well known that on any smooth (or piecewise-smooth) curve Γ the Cauchy projectors map H ν (Γ) onto itself for any ν ∈ (0, 1), but for essentially non-smooth curves this proposition is not valid. We will show that even for non-rectifiable curves the Cauchy projectors continuously map the intersection of all spaces H ν (Γ), 0 < ν < 1 (considered as countably-normed Frechet space) onto itself.
Authors and Affiliations
B. Kats, S. Mironova, A. Pogodina
ТЕОРЕМА ИСКАЖЕНИЯ В ОДНОМ ПОДКЛАССЕ МЕРОМОРФНЫХ И ОДНОЛИСТНЫХ В ЕДИНИЧНОМ КРУГЕ ФУНКЦИЙ
It is obtained some estimates for functions from C_0 subset of meromorphic univalent in the unit disk functions.
FOURIER COEFFICIENTS OF CONTINUOUS FUNCTIONS WITH RESPECT TO LOCALIZED HAAR SYSTEM
We construct a nontrivial example of a continuous function f* on [0, 1]² which is orthogonal to tensor products of Haar functions supported on intervals of the same length. This example clarifies the possible behaviour o...
ПЕРЕСЕЧЕНИЕ МНОЖЕСТВА ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ДЛЯ ДВУХ ФУНКЦИОНАЛОВ
В работе исследована экстремальная задача для линейного функционала в классе U' α. В частности, получен вид экстремальной функции.
КЛАССИФИКАЦИЯ ВЫПУКЛЫХ МНОГОГРАННИКОВ
The paper is continuation of the author's series of paper devoted to the solution of Hadviger's problem of covering convex polyhedrons with body images at homothety. The problem under discussion in this paper can be desc...
РАСПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ ДЕДЕКИНДА В КЛАССАХ ВЫЧЕТОВ
В работе устанавливается критерий слабо равномерного рас- пределения функции Дедекинда ψ(n) и приводится асимптоти- ческий ряд для распределения ее значений по классам вычетов, взаимно простых с модулем.