КЛАССИФИКАЦИЯ ВЫПУКЛЫХ МНОГОГРАННИКОВ

Journal Title: Проблемы анализа-Issues of Analysis - Year 2004, Vol 11, Issue

Abstract

The paper is continuation of the author's series of paper devoted to the solution of Hadviger's problem of covering convex polyhedrons with body images at homothety. The problem under discussion in this paper can be described as follows: to give the classification of all convex polyhedrons. Principle of classification the following: exists prismatic part of polyhedron or does not exist.

Authors and Affiliations

Т. М. ПУОЛОКАЙНЕН

Keywords

Related Articles

DISTRIBUTION OF VALUES OF THE SUM OF UNITARY DIVISORS IN RESIDUE CLASSES

In this paper we prove the tauberian type theorem containing the asymptotic series for the Dirichlet series. We use this result to study distribution of sum of unitary divisors in residue classes coprime with a module. T...

MONOTONICITY AND CONVEXITY PROPERTIES OF THE NIELSEN’S β-FUNCTION

The Nielsen’s β-function provides a powerful tool for evaluating and estimating certain integrals, series and mathematical constants. It is related to other special functions such as the digamma function, the Euler’s bet...

ОБОБЩЕННАЯ ТЕОРЕМА КАТЕТОВА ДЛЯ ПОЛУНОРМАЛЬНЫХ ФУНКТОРОВ

A generalization of the Katetov Theorem for seminormal functors and the property of hereditarily K-normality is proved.

Sobolev-Orthonormal System of Functions Generated by the System of Laguerre Functions

We consider the system of functions λ α r,n (x) (r ∈ N, n = 0, 1, 2, . . .), orthonormal respect to the Sobolev-type inner product f, g = Σ r-1 ν=0 f (υ) (0) g (υ) (0)+ I ∞ 0 f (r) (x) g (r) (x) dx and generated by the o...

The Tauberian theorems for the slowly variating with residual functions and their applications

В статье доказываются две тауберовых теоремы для преобразования Лапласа медленно меняющихся с остатком функций и рассматриваются их приложения к суммам значений неотрицательных мультипликативных функций, связанных с проб...

Download PDF file
  • EP ID EP243926
  • DOI -
  • Views 87
  • Downloads 0

How To Cite

Т. М. ПУОЛОКАЙНЕН (2004). КЛАССИФИКАЦИЯ ВЫПУКЛЫХ МНОГОГРАННИКОВ. Проблемы анализа-Issues of Analysis, 11(), 34-40. https://europub.co.uk./articles/-A-243926