MONOTONICITY AND CONVEXITY PROPERTIES OF THE NIELSEN’S β-FUNCTION
Journal Title: Проблемы анализа-Issues of Analysis - Year 2017, Vol 6, Issue 2
Abstract
The Nielsen’s β-function provides a powerful tool for evaluating and estimating certain integrals, series and mathematical constants. It is related to other special functions such as the digamma function, the Euler’s beta function and the Gauss’ hypergeometric function. In this work, we prove some monotonicity and convexity properties of the function by employing largely the convolution theorem for Laplace transforms.
Authors and Affiliations
Kwara Nantomah
ПЕРЕСЕЧЕНИЕ МНОЖЕСТВА ЭКСТРЕМАЛЬНЫХ ФУНКЦИЙ ДЛЯ ДВУХ ФУНКЦИОНАЛОВ
В работе исследована экстремальная задача для линейного функционала в классе U' α. В частности, получен вид экстремальной функции.
Cauchy projectors on non-smooth and non-rectifiable curves
Let f (t) be defined on a closed Jordan curve Γ that divides the complex plane on two domains D + , D − , ∞ ∈ D − . Assume that it is representable as a difference f (t) = F + (t) − F − (t), t ∈ Γ, where F ± (t) are limi...
JACOBIAN CONJECTURE, TWO-DIMENSIONAL CASE
The Jacobian Conjecture was first formulated by O. Keller in 1939. In the modern form it supposes injectivity of the polynomial mapping f: R^n → R^n (C^n → C^n) provided that jacobian J_f ≡ const ≠ 0. In this note we con...
О КОЛИЧЕСТВЕ ЧИСЕЛ, ПОРОЖДЕННЫХ ПРОСТЫМИ ИЗ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЙ И НЕ ПРЕВОСХОДЯЩИХ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА
It is given the asimptotic expansion for number positive integer that not exceed of the real number and divisible by prime number from arithmetical progression in this paper.
ON METRIC SPACE VALUED FUNCTIONS OF BOUNDED ESSENTIAL VARIATION
Let ∅≠T ⊂ R and let X be a metric space. For an ideal J ⊂ P(T) and a function f:T-> X, we define the essential variation V^J ess(f, T) as the in mum of all variations V (g; T) where g:T-> X, g = f on T\E, and E in J. We...