Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique

Journal Title: International Journal of Bioprinting - Year 2015, Vol 1, Issue 1

Abstract

Bioprinting is a layer-by-layer additive fabrication technique for making three-dimensional (3D) tissue and organ constructs using biological products. The capability to fabricate 3D tubular structure in free-form or vertical configuration is the first step towards the possibility of organ printing in three dimensions. In this study, alginate-based tubular structures of varying viscosity were printed vertically using multi-nozzle extrusion-based technique. Manufacturing challenges associated with the vertical printing configurations are also discussed here. We have also proposed measurable parameters to quantify the quality of printing for systematic investigation in bioprinting. This study lays a foundation for the successful fabrication of viable 3D tubular constructs.

Authors and Affiliations

Edgar Y. S. Tan, Wai Yee Yeong

Keywords

Related Articles

3D bioprinting processes: A perspective on classification and terminology

This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorize...

High-precision three-dimensional inkjet technology for live cell bioprinting

In recent years, bioprinting has emerged as a promising technology for the construction of three-dimensional (3D) tissues to be used in regenerative medicine or in vitro screening applications. In the present study, we p...

Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study

For more than a decade, living cells and biomaterials (typically hydrogels) are printed via laser-assisted bioprinting. Often, a thin metal layer is applied as laser-absorbing material called dynamic release layer (DRL)....

Progress in organ 3D bioprinting

Three dimensional (3D) printing is a hot topic in today’s scientific, technological and commercial areas. It is recognized as the main field which promotes “the Third Industrial Revolution”. Recently, human organ 3D biop...

Mechanisms and modeling of electrohydrodynamic phenomena

The purpose of this paper is to review the mechanisms of electrohydrodynamic (EHD) phenomenon. From this review, researchers and students can learn principles and development history of EHD. Significant progress has been...

Download PDF file
  • EP ID EP678633
  • DOI -
  • Views 196
  • Downloads 0

How To Cite

Edgar Y. S. Tan, Wai Yee Yeong (2015). Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique. International Journal of Bioprinting, 1(1), -. https://europub.co.uk./articles/-A-678633