Laser-assisted bioprinting at different wavelengths and pulse durations with a metal dynamic release layer: A parametric study
Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 1
Abstract
For more than a decade, living cells and biomaterials (typically hydrogels) are printed via laser-assisted bioprinting. Often, a thin metal layer is applied as laser-absorbing material called dynamic release layer (DRL). This layer is vaporized by focused laser pulses generating vapor pressure that propels forward a coated biomaterial. Different lasers with laser wavelengths from 193 to 1064 nanometer have been used. As a metal DRL gold, silver, or titanium layers have been used. The applied laser pulse durations were usually in the nanosecond range from 1 to 30 ns. In addition, some studies with femtosecond lasers have been published. However, there are no studies on the effect of all these lasers parameters on bioprinting with a metal DRL, and on comparing different wavelengths and pulse durations – except one study comparing 500 femtosecond pulses with 15 ns pulses. In this paper, the effects of laser wavelength (355, 532, and 1064 nm) and laser pulse duration (in the range of 8 to 200 ns) are investigated. Furthermore, the effects of laser pulse energy, intensity, and focal spot size are studied. The printed droplet volume, hydrogel jet velocity, and cell viability are analyzed.
Authors and Affiliations
Lothar Koch, Ole Brandt, Andrea Deiwick and Boris Chichkov
A Perspective on Using Machine Learning in 3D Bioprinting
Recently, three-dimensional (3D) printing technologies have been widely applied in industry and our daily lives. The term 3D bioprinting has been coined to describe 3D printing at the biomedical level. Machine learning i...
Additive manufacturing of bone scaffolds
Additive manufacturing (AM) can obtain not only customized external shape but also porous internal structure for scaffolds, both of which are of great importance for repairing large segmental bone defects. The scaffold f...
Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide
In recent years, hydrogels have been used as important biomaterials for 3D printing of three dimensional tissues or organs. The key issue for printing a successful scaffold is the selection of a material with a good prin...
Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model
Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternativ...
Creation of a vascular system for organ manufacturing
The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...