Digital Light Processing Based Three-dimensional Printing for Medical Applications
Journal Title: International Journal of Bioprinting - Year 2020, Vol 6, Issue 1
Abstract
An additive manufacturing technology based on projection light, digital light processing (DLP), three-dimensional (3D) printing, has been widely applied in the field of medical products production and development. The precision projection light, reflected by a digital micromirror device of million pixels instead of one focused point, provides this technology both printing accuracy and printing speed. In particular, this printing technology provides a relatively mild condition to cells due to its non-direct contact. This review introduces the DLP-based 3D printing technology and its applications in medicine, including precise medical devices, functionalized artificial tissues, and specific drug delivery systems. The products are particularly discussed for their significance in medicine. This review indicates that the DLP-based 3D printing technology provides a potential tool for biological research and clinical medicine. While, it is faced to the challenges of scale-up of its usage and waiting period of regulatory approval.
Authors and Affiliations
Jiumeng Zhang, Qipeng Hu, Shuai Wang, Jie Tao, Maling Gou
Microstereolithography-fabricated microneedles for fluid sampling of histamine-contaminated tuna
A custom-designed microneedle sampling system was prepared using dynamic mask microstereolithography; this sampling system was used for determination of histamine content in fresh, histamine-spiked, and spoiled tuna fles...
Revealing emerging science and technology research for dentistry applications of 3D bioprinting
Science and technology (S&T) on three-dimensional (3D) bioprinting is growing at an increasingly accelerated pace; one major challenge represents how to develop new solutions for frequent oral diseases such as periodonta...
Advancing cancer research using bioprinting for tumor-on-a-chip platforms
There is an urgent for a novel approach to cancer research with 1.7 million new cases of cancer occurring every year in the United States of America. Tumor models offer promise as a useful platform for cancer research wi...
The development of cell-adhesive hydrogel for 3D printing
Biofabrication has gained tremendous attention for manufacturing functional organs or tissues. To fabricate functional organs or tissues, it is necessary to reproduce tissue-specific micro to macro structures. Previously...
Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblasts infiltration
Electrospun polymeric nanofibrous scaffold possesses significant potential in the field of tissue engineering due to its extracellular matrix mimicking topographical features that modulate a variety of key cellular activ...