Distributed multicore fiber sensors
Journal Title: Opto-Electronic Advances - Year 2020, Vol 3, Issue 2
Abstract
Multicore fiber (MCF) which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels. Different from the situation in standard single mode fiber (SMF), the fiber bending gives rise to tangential strain in off-center cores, and this unique feature has been employed for directional bending and shape sensing, where strain measurement is achieved by using either fiber Bragg gratings (FBGs), optical frequency-domain reflectometry (OFDR) or Brillouin distributed sensing technique. On the other hand, the parallel spatial cores enable space-division multiplexed (SDM) system configuration that allows for the multiplexing of multiple distributed sensing techniques. As a result, multi-parameter sensing or performance enhanced sensing can be achieved by using MCF. In this paper, we review the research progress in MCF based distributed fiber sensors. Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented. The bending sensitivity of off-center cores is analyzed. Curvature and shape sensing, as well as various SDM distributed sensing using MCF are summarized, and the working principles of diverse MCF sensors are discussed. Finally, we present the challenges and prospects of MCF for distributed sensing applications.
Authors and Affiliations
Zhiyong Zhao, Ming Tang*, Chao Lu
Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels
We report the generation of high energy 2 μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system. The all-fiber configuration was realized by a flexible large-mode area photonic crystal...
Recent advances in nonlinear optics for bio-imaging applications
Nonlinear optics, which is a subject for studying the interaction between intense light and materials, has great impact on various research fields. Since many structures in biological tissues exhibit strong nonlinear opt...
Acoustic wave detection of laser shock peening
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic...
Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity
Orbital angular momentum (OAM) mode division provides a promising solution to push past the already exhausted available degrees of freedom available in conventional optical communications. Nevertheless, the practical dep...
Etching-assisted femtosecond laser modification of hard materials
With high hardness, high thermal and chemical stability and excellent optical performance, hard materials exhibit great potential applications in various fields, especially in harsh conditions. Femtosecond laser ablation...