Efficiency Enhancement in Air Heat Exchangers: Analyzing the Impact of Size Ratio and Geometric Modifications on Delta-Wing Vortex Generators

Journal Title: Power Engineering and Engineering Thermophysics - Year 2023, Vol 2, Issue 4

Abstract

In the domain of compact flat plate heat exchangers, enhancing efficiency remains a pivotal challenge, primarily due to the low thermal conductivity characteristic of the gas phase. This investigation explores efficiency improvements in such exchangers by the integration of modified delta-wing longitudinal vortex generators (LVGs). The focus is centered on geometric modifications and alterations in the size ratios of the traditional delta-wing design as documented in pertinent literature. The geometric modifications include partial surface removal and elevation from the attachment surface, as well as a combination of these approaches. Concurrently, size ratio alterations involve a systematic reduction in the overall dimensions of the modified LVGs to 75%, 50%, and 25% of their initial size. Employing ANSYS Fluent, the study conducts numerical simulations to evaluate air flow at various Reynolds numbers (Re = 2,000 – 10,000). Analyses include examining temperature progression along the axial distance, mapping temperature contours, and applying the Q-criterion for in-depth understanding. Performance evaluation of each modification was undertaken by calculating the thermal enhancement factor (TEF) in relation to a baseline scenario of two unmodified flat plates, utilizing the Nusselt number and the friction factor for comprehensive comparison. To ensure reliability, the study demonstrates mesh independence in results and validates the computational model through comparative analysis with established correlations and experimental data from existing literature on delta-wing LVG designs. Findings indicate that geometric modifications of vortex generators, as explored in this research, do not markedly decrease head loss nor significantly enhance system performance. In contrast, size ratio modifications, particularly the reduction of vortex generator dimensions to 75% and 50% of the original size, show an increase in TEF ranging from 3% to 9% compared to the conventional delta-wing design. This underscores the potential of incorporating an array of such modified LVGs on each plate of a flat plate heat exchanger to boost its efficiency significantly.

Authors and Affiliations

Pedro Popelka, Álvaro Valencia

Keywords

Related Articles

Engine Exhaust Stub Sizing for Turboprop Powered Aircraft

Turboprop engines are widely used in the commuter or light transport aircraft (LTA) turboprop engines, because they are more fuel efficient than the propeller, which has a low jet velocity, at flight velocities below 0.6...

Computational Analysis of Thermal Performance Augmentation in Helical Coil Heat Exchangers via CuO/Water Nanofluid

Helical or spiral coiled heat exchangers, prevalent in industries such as power generation, heat recovery systems, the food sector, and various plant processes, exhibit potential for performance enhancement through optim...

Photovoltaic Solar Energy for Street Lighting: A Case Study at Kuwaiti Roundabout, Gaza Strip, Palestine

As populations expand and cities grow, the horizontal development of sustainable initiatives, coupled with the preservation of natural resources and the shift towards agricultural ventures, has led to an increased necess...

Optimal Operation Control of Composite Ground Source Heat Pump System

During the operation of the ground source heat pump (GSHP) system, the operations of the chiller system should be controlled by adjusting the difference between water temperature and wet bulb temperature. Therefore, it i...

Measuring Temperatures Generated by Air Plasma Technology

The atmospheric pressure air plasma technology is based on the general principle of transforming the air into an ideal conductor of plasma energy thanks to the application of an electric potential difference able to ioni...

Download PDF file
  • EP ID EP732037
  • DOI https://doi.org/10.56578/peet020403
  • Views 48
  • Downloads 0

How To Cite

Pedro Popelka, Álvaro Valencia (2023). Efficiency Enhancement in Air Heat Exchangers: Analyzing the Impact of Size Ratio and Geometric Modifications on Delta-Wing Vortex Generators. Power Engineering and Engineering Thermophysics, 2(4), -. https://europub.co.uk./articles/-A-732037