О ТЁПЛИЦЕВЫХ ОПЕРАТОРАХ В ВЕСОВЫХ СОБОЛЕВСКИХ ПРОСТРАНСТВАХ ГОЛОМОРФНЫХ В ПОЛИДИСКЕ ФУНКЦИЙ

Journal Title: Проблемы анализа-Issues of Analysis - Year 2011, Vol 18, Issue

Abstract

В статье получена полная характеризация тех символов, при которых соответствующие Тёплицевые операторы действуют ограниченно в Соболевских пространствах голоморфных в полидиске функций.

Authors and Affiliations

Ф. А. Шамоян

Keywords

Related Articles

REDUCED p-MODULUS, p-HARMONIC RADIUS AND p-HARMONIC GREEN’S MAPPINGS

We consider the definitions and properties of the metric characteristics of the spatial domains previously introduced by the author, and their connection with the class of mappings, the particular case of which are the h...

ТЕОРЕМА РЕГУЛЯРНОСТИ УБЫВАНИЯ В ЛИНЕЙНО-ИНВАРИАНТНЫХ СЕМЕЙСТВАХ ФУНКЦИЙ

In this paper it is proved the regularity theorem for linearly invariant families of analytic function in the unit disk and some results, connected with this theorem.

Sobolev-Orthonormal System of Functions Generated by the System of Laguerre Functions

We consider the system of functions λ α r,n (x) (r ∈ N, n = 0, 1, 2, . . .), orthonormal respect to the Sobolev-type inner product f, g = Σ r-1 ν=0 f (υ) (0) g (υ) (0)+ I ∞ 0 f (r) (x) g (r) (x) dx and generated by the o...

О НОСИТЕЛЯХ МАКСИМАЛЬНЫХ СЦЕПЛЕННЫХ СИСТЕМ

This article is devoted to the functor of superextension. By definition, the superextansion of a compact space consist of all maximal linked systems of that space. It is well known that the support of a maximal linked sy...

THE SCHWARZIAN DERIVATIVES OF HARMONIC FUNCTIONS AND UNIVALENCE CONDITIONS

In the paper we obtain some analogues of Nehari’s univalence conditions for sense-preserving functions that are harmonic in the unit disc D = {z ∈ C : |z| < 1}.

Download PDF file
  • EP ID EP238931
  • DOI -
  • Views 96
  • Downloads 0

How To Cite

Ф. А. Шамоян (2011). О ТЁПЛИЦЕВЫХ ОПЕРАТОРАХ В ВЕСОВЫХ СОБОЛЕВСКИХ ПРОСТРАНСТВАХ ГОЛОМОРФНЫХ В ПОЛИДИСКЕ ФУНКЦИЙ. Проблемы анализа-Issues of Analysis, 18(), 91-92. https://europub.co.uk./articles/-A-238931